
DDS Record Replay Documentation
Release ..

eProsima

Mar 26, 2024

INTRODUCTION

1 Contacts and Commercial support 3

2 Contributing to the documentation 5

3 Structure of the documentation 7
3.1 Overview . 7
3.2 Contacts and Commercial support . 9
3.3 Contributing to the documentation . 9
3.4 Structure of the documentation . 9
3.5 DDS Record & Replay on Windows . 10
3.6 DDS Record & Replay on Linux . 10
3.7 Docker Image (recommended) . 10
3.8 Getting Started . 11
3.9 Usage . 14
3.10 Configuration . 16
3.11 Remote Control . 29
3.12 Getting Started . 36
3.13 Usage . 38
3.14 Configuration . 41
3.15 Configuring Fast DDS DynamicTypes . 49
3.16 Visualize data with Foxglove . 58
3.17 Linux installation from sources . 63
3.18 Windows installation from sources . 70
3.19 CMake options . 79
3.20 Version v0.4.0 . 80
3.21 Previous Versions . 80
3.22 Glossary . 83

Index 85

i

ii

DDS Record Replay Documentation, Release ..

eProsima DDS Record & Replay is an end-user software application that efficiently saves DDS data published into a
DDS environment in a MCAP format database. Thus, the exact playback of the recorded network events is possible as
the data is linked to the timestamp at which the original data was published.

eProsima DDS Record & Replay is easily configurable and installed with a default setup, so that DDS topics, data types
and entities are automatically discovered without the need to specify the types of data recorded. This is because the
recording tool exploits the DynamicTypes functionality of eProsima Fast DDS, the C++ implementation of the DDS
(Data Distribution Service) Specification defined by the Object Management Group (OMG).

eProsima DDS Record & Replay includes the following tools:

• DDS Recorder tool. The main functionality of this tool is to save the data in a MCAP database. The database
contains the records of the publication timestamp of the data, the serialized data, and the definition of the data
serialization type and format. The output MCAP file can be read with any user tool compatible with MCAP file
reading since it contains all the necessary information for reading and reproducing the data.

• DDS Remote Controller tool. This application allows remote control of the recording tool. Thus, a user can
have the recording tool on a device and from another device send commands to start, stop or pause data recording.

• DDS Replay tool. This application allows to reproduce DDS traffic recorded with a DDS Recorder. A user can
specify which messages to replay by either setting a time range (begin/end times) out of which messages will be
discarded, or directly by blocking/whitelisting a set of topics of interest. It is also possible to choose a different
playback rate, as well as to use topic QoS different to the ones recorded.

INTRODUCTION 1

http://www.eprosima.com/
https://fast-dds.docs.eprosima.com
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://mcap.dev/

DDS Record Replay Documentation, Release ..

2 INTRODUCTION

CHAPTER

ONE

CONTACTS AND COMMERCIAL SUPPORT

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

3

https://eprosima.com/
mailto:support@eprosima.com

DDS Record Replay Documentation, Release ..

4 Chapter 1. Contacts and Commercial support

CHAPTER

TWO

CONTRIBUTING TO THE DOCUMENTATION

DDS Record & Replay Documentation is an open source project, and as such all contributions, both in the form of
feedback and content generation, are most welcomed. To make such contributions, please refer to the Contribution
Guidelines hosted in our GitHub repository.

5

https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

DDS Record Replay Documentation, Release ..

6 Chapter 2. Contributing to the documentation

CHAPTER

THREE

STRUCTURE OF THE DOCUMENTATION

This documentation is organized into the sections below.

• Installation Manual

• Recording application

• Replay application

• Tutorials

• Developer Manual

• Release Notes

eProsima DDS Record & Replay is an end-user software application that efficiently saves DDS data published into a
DDS environment in a MCAP format database. Thus, the exact playback of the recorded network events is possible as
the data is linked to the timestamp at which the original data was published.

eProsima DDS Record & Replay is easily configurable and installed with a default setup, so that DDS topics, data types
and entities are automatically discovered without the need to specify the types of data recorded. This is because the
recording tool exploits the DynamicTypes functionality of eProsima Fast DDS, the C++ implementation of the DDS
(Data Distribution Service) Specification defined by the Object Management Group (OMG).

3.1 Overview

eProsima DDS Record & Replay includes the following tools:

• DDS Recorder tool. The main functionality of this tool is to save the data in a MCAP database. The database
contains the records of the publication timestamp of the data, the serialized data, and the definition of the data
serialization type and format. The output MCAP file can be read with any user tool compatible with MCAP file
reading since it contains all the necessary information for reading and reproducing the data.

• DDS Remote Controller tool. This application allows remote control of the recording tool. Thus, a user can
have the recording tool on a device and from another device send commands to start, stop or pause data recording.

• DDS Replay tool. This application allows to reproduce DDS traffic recorded with a DDS Recorder. A user can
specify which messages to replay by either setting a time range (begin/end times) out of which messages will be
discarded, or directly by blocking/whitelisting a set of topics of interest. It is also possible to choose a different
playback rate, as well as to use topic QoS different to the ones recorded.

7

http://www.eprosima.com/
https://fast-dds.docs.eprosima.com
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://mcap.dev/

DDS Record Replay Documentation, Release ..

8 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.2 Contacts and Commercial support

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

3.3 Contributing to the documentation

DDS Record & Replay Documentation is an open source project, and as such all contributions, both in the form of
feedback and content generation, are most welcomed. To make such contributions, please refer to the Contribution
Guidelines hosted in our GitHub repository.

3.4 Structure of the documentation

This documentation is organized into the sections below.

• Installation Manual

• Recording application

• Replay application

• Tutorials

• Developer Manual

• Release Notes

3.2. Contacts and Commercial support 9

https://eprosima.com/
mailto:support@eprosima.com
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

DDS Record Replay Documentation, Release ..

3.5 DDS Record & Replay on Windows

Warning: The current version of DDS Record & Replay does not have installers for Windows platforms. Please
refer to the Windows installation from sources section to learn how to build DDS Record & Replay on Windows
from sources.

3.6 DDS Record & Replay on Linux

Warning: The current version of DDS Record & Replay does not have installers for Linux platforms. Please refer
to the Linux installation from sources section to learn how to build DDS Record & Replay on Linux from sources.

3.7 Docker Image (recommended)

Warning: Currently, DDS Record & Replay Docker image only contains DDS Recorder tool, DDS Replay tool
application will be added soon.

eProsima distributes a Docker image of DDS Record & Replay with Ubuntu 22.04 as base image. This image launches
an instance of DDS Record & Replay that is configured using a YAML configuration file provided by the user and shared
with the Docker container. The steps to run DDS Record & Replay in a Docker container are explained below.

1. Download the compressed Docker image in .tar format from the eProsima Downloads website. It is strongly
recommended to download the image corresponding to the latest version of DDS Record & Replay.

2. Extract the image by executing the following command:

load ubuntu-ddsrecorder:<version>.tar

where version is the downloaded version of DDS Record & Replay.

3. Build a DDS Record & Replay configuration YAML file on the local machine. This will be the DDS Record
& Replay configuration file that runs inside the Docker container. To continue this installation manual, let’s
use the configuration file provided in this tutorial. Open your preferred text editor and copy the configura-
tion example from here into the /<dds_recorder_ws>/DDS_RECORDER_CONFIGURATION.yaml file, where
dds_recorder_ws is the path of the configuration file. To make this accessible from the Docker container we
will create a shared volume containing just this file. This is explained in next point.

4. Run the Docker container executing the following command:

docker run -it \
--net=host \
--ipc=host \
--privileged \

(continues on next page)

10 Chapter 3. Structure of the documentation

https://www.eprosima.com/index.php/downloads-all

DDS Record Replay Documentation, Release ..

(continued from previous page)

-v /<dds_recorder_ws>/DDS_RECORDER_CONFIGURATION.yaml:/root/DDS_RECORDER_
→˓CONFIGURATION.yaml \

ubuntu-ddsrecorder:v0.3.0

It is important to mention that both the path to the configuration file hosted in the local machine and the one
created in the Docker container must be absolute paths in order to share just one single file as a shared volume.

After executing the previous command you should be able to see the initialization traces from the DDS Record
& Replay running in the Docker container. If you want to terminate the application gracefully, just press Ctrl+C
to stop the execution of DDS Record & Replay.

3.8 Getting Started

3.8.1 Project Overview

eProsima DDS Record & Replay is a cross-platform application developed by eProsima and powered by Fast DDS
that contains a set of tools for debugging DDS networks. Among these tools is a recording application, called DDS
Recorder, which allows a user to capture data published in a DDS environment for later analysis or playback.

The DDS Recorder application automatically discovers all topics in the DDS network and saves the data published in
each topic with the publication timestamp of the data. Furthermore, by using the DynamicTypes feature of Fast DDS,
it is possible to record the type of the data in the MCAP file. The benefit of this comes from the fact that the data is
saved serialized according to the CDR format.

By default, eProsima DDS Recorder saves all DDS traffic encountered in the domain of choice, storing samples in
the same form they are received (serialized) without the need to have received the (dynamic) type associated to these
samples. When recorded samples with no associated type information are played back through a DDS Replayer, only
DDS applications in possession of this type information will be able to receive and process these messages.

However, some applications might not have this information available out of the box, as it is the case of applications
relying on Dynamic Types. Additionally, tools such as Foxglove Studio require this information to be stored in the
resulting MCAP file so messages can be deserialized for visualization. In such scenarios, it is required that type
information gets stored along with data samples, which is automatically done by a DDS Recorder instance as long
as the publisher applications (whose messages are recorded) send this information. This can be easily achieved by
applying the configuration described in this section.

Moreover, DDS Recorder is designed to ensure that internal communications are handled efficiently, from the reception
of the data to its storage in the output database. This is achieved through the internal implementation of a zero-copy
communication mechanism implemented in one of the DDS Recorder base libraries. It is also possible to configure the
number of threads that execute these data reception and saving tasks, as well as the size of the internal buffers to avoid
writing to disk with each received data.

Usage Description

DDS Recorder is a terminal (non-graphical) application that creates a recording service as long as it is running. Al-
though most use cases are covered by the default configuration, the DDS Recorder can be configured via a YAML file,
whose format is very intuitive and human-readable.

• Run: Only the command that launches the application (ddsrecorder) needs to be executed to run a DDS
Recorder. Please, read this section to apply a specific configuration, and this section to see the supported argu-
ments.

• Interact: Once the DDS Recorder application is running, the allowlist and blocklist topic lists could be changed
in runtime by just changing the YAML configuration file. It is also possible to change the status of the recorder

3.8. Getting Started 11

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html
https://studio.foxglove.dev/

DDS Record Replay Documentation, Release ..

(RUNNING, PAUSED, SUSPENDED, STOPPED or CLOSED) by remote control of the application. This remote control
is done by sending commands via DDS or by using the graphical remote control application provided with the
eProsima DDS Record & Replay software tool (see Remote control).

• Close: To close the DDS Recorder application just send a Ctrl+C signal to terminate the process gracefully (see
Closing Recording Application) or close it remotely using the remote control application (see Remote control).

Common Use cases

To get started with DDS Recorder, please visit section Example of usage. In addition, this documentation provides
several tutorials on how to set up a DDS Recorder, a comprehensive Fast DDS application using DynamicTypes and
how to read the generated MCAP file.

3.8.2 Example of usage

This example will serve as a hands-on tutorial, aimed at introducing some of the key concepts and features that eProsima
DDS Record & Replay recording application (DDS Recorder or ddsrecorder) has to offer.

Prerequisites

It is required to have eProsima DDS Record & Replay previously installed using one of the following installation
methods:

• DDS Record & Replay on Windows

• DDS Record & Replay on Linux

• Docker Image (recommended)

Additionally, ShapesDemo is required to publish and subscribe shapes of different colors and sizes. ShapesDemo
application is already prepared to use Fast DDS DynamicTypes, which is required when using the DDS Recorder.
Install it by following any of the methods described in the given links:

• Windows installation from binaries

• Linux installation from sources

• Docker Image

Start ShapesDemo

Let us launch a ShapesDemo instance and start publishing in topics Square with default settings.

Recorder configuration

DDS Recorder runs with default configuration settings. This default configuration records all messages of all DDS
Topics found in DDS Domain 0 in the output_YYYY-MM-DD-DD_hh-mm-ss.mcap file.

Additionally, it is possible to change the default configuration parameters by means of a YAML configuration file.

Note: Please refer to Configuration for more information on how to configure a DDS Recorder.

12 Chapter 3. Structure of the documentation

https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo
https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/windows_binaries.html
https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/linux_sources.html
https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/docker_image.html

DDS Record Replay Documentation, Release ..

Recorder execution

Launching a DDS Recorder instance is as easy as executing the following command:

ddsrecorder

In order to know all the possible arguments supported by this tool, use the command:

ddsrecorder --help

Stop the recorder with Ctrl+C and check that the MCAP file exists.

3.8. Getting Started 13

DDS Record Replay Documentation, Release ..

Next Steps

Explore section Tutorials for more information on how to configure and set up a recorder, as well as to discover multiple
scenarios where DDS Recorder may serve as a useful tool. Also, feel free to check out this example, where a DDS
Replayer is used to reproduce the traffic recorded following the steps in this tutorial.

3.9 Usage

eProsima DDS Recorder is a user application executed from command line.

• Starting Recording Application

• Closing Recording Application

• Recording Service Command-Line Parameters

14 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.9.1 Starting Recording Application

Docker Image

The recommended method to run the DDS Recorder is to instantiate a Docker container of the DDS Record & Replay
image. Here are the instructions to download the compressed DDS Record & Replay Docker image and load it locally.

To run the DDS Recorder from a Docker container execute the following command:

docker run -it \
--net=host \
--ipc=host \
-v /<dds_recorder_ws>/DDS_RECORDER_CONFIGURATION.yaml:/root/DDS_RECORDER_

→˓CONFIGURATION.yaml \
ubuntu-ddsrecorder:v<X.X.X> ddsrecorder

Installation from sources

eProsima DDS Record & Replay depends on fastrtps, fastcdr and ddspipe libraries. In order to correctly execute
the recorder, make sure that fastrtps, fastcdr and ddspipe are properly sourced.

source <path-to-fastdds-installation>/install/setup.bash
source <path-to-ddspipe-installation>/install/setup.bash
source <path-to-ddsrecordreplay-installation>/install/setup.bash

Note: If Fast DDS, DDS Pipe and DDS Record & Replay have been installed in the system, these libraries would be
sourced by default.

To start eProsima DDS Recorder with a default configuration, enter:

ddsrecorder

3.9.2 Closing Recording Application

SIGINT

To close eProsima DDS Recorder, press Ctrl+C. DDS Recorder will perform a clean shutdown.

SIGTERM

Write command kill <pid> in a different terminal, where <pid> is the id of the process running the DDS Recorder.
Use ps or top programs to check the process ids.

3.9. Usage 15

DDS Record Replay Documentation, Release ..

TIMEOUT

Setting a maximum amount of seconds that the application will work using argument --timeout will close the appli-
cation once the time has expired.

3.9.3 Recording Service Command-Line Parameters

The DDS Recorder application supports several input arguments:

Com-
mand

Description Option Pos-
sible
Values

Default Value

Help It shows the usage information of the application. -h
--help

Ver-
sion

It shows the current version of the DDS Recorder and the hash
of the last commit of the compiled code.

-v
--version

Con-
figu-
ration
File

Configuration file path. -c
--config-path

./
DDS_RECORDER_CONFIGURATION.
yaml

Reload
Timer

The configuration file will be automatically reloaded according
to the specified time period.

-r
--reload-time

Un-
signed
Integer

0

Time-
out

Set a maximum time while the application will be running. 0
means that the application will run forever (until kill via signal).

-t
--timeout

Un-
signed
Integer

0

Debug Enables the DDS Recorder logs so the execution can be followed
by internal debugging information. Sets Log Verbosity to
info and Log Filter to DDSRECORDER.

-d
--debug

Log
Ver-
bosity

Set the verbosity level so only log messages with equal or higher
importance level are shown.

--log-verbosityinfo
warning
error

warning

Log
Filter

Set a regex string as filter. --log-filterString "DDSRECORDER"

3.10 Configuration

• DDS Recorder Configuration

– DDS Configuration

– Recorder Configuration

– Remote Controller

– Specs Configuration

– General Example

• Fast DDS Configuration

16 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.10.1 DDS Recorder Configuration

A DDS Recorder is configured by a .yaml configuration file. This .yaml file contains all the information regarding the
DDS interface configuration, recording parameters, and DDS Recorder specifications. Thus, this file has four major
configuration groups:

• dds: configuration related to DDS communication.

• recorder: configuration of data writing in the database.

• remote-controller: configuration of the remote controller of the DDS Recorder.

• specs: configuration of the internal operation of the DDS Recorder.

DDS Configuration

Configuration related to DDS communication.

DDS Domain

Tag domain configures the Domain Id.

domain: 101

Built-in Topics

The discovery phase can be accelerated by listing topics under the builtin-topics tag. The DDS Recorder will create
the DataWriters and DataReaders for these topics in the DDS Recorder initialization. The Topic QoS for these topics
can be manually configured with the Manual Topic and with the Specs Topic QoS; if a Topic QoS is not configured, it
will take its default value.

The builtin-topics must specify a name and type without wildcard characters.

Example of usage:

builtin-topics:
- name: HelloWorldTopic
type: HelloWorld

Topic Filtering

The DDS Recorder automatically detects the topics that are being used in a DDS Network. The DDS Recorder then
creates internal DDS Readers to record the data published on each topic. The DDS Recorder allows filtering DDS
Topics to allow users to configure the DDS Topics that must be recorded. These data filtering rules can be configured
under the allowlist and blocklist tags. If the allowlist and blocklist are not configured, the DDS Recorder
will recorded the data published on every topic it discovers. If both the allowlist and blocklist are configured
and a topic appears in both of them, the blocklist has priority and the topic will be blocked.

Topics are determined by the tags name (required) and type, both of which accept wildcard characters.

Note: Placing quotation marks around values in a YAML file is generally optional, but values containing wildcard
characters do require single or double quotation marks.

3.10. Configuration 17

DDS Record Replay Documentation, Release ..

Consider the following example:

allowlist:
- name: AllowedTopic1
type: Allowed

- name: AllowedTopic2
type: "*"

- name: HelloWorldTopic
type: HelloWorld

blocklist:
- name: "*"
type: HelloWorld

In this example, the data published in the topic AllowedTopic1 with type Allowed and in the topic AllowedTopic2
with any type will be recorded by the DDS Recorder. The data published in the topic HelloWorldTopic with type
HelloWorld will be blocked, since the blocklist is blocking all topics with any name and with type HelloWorld.

Topic QoS

The following is the set of QoS that are configurable for a topic. For more information on topics, please read the Fast
DDS Topic section.

Quality of Ser-
vice

Yaml tag Data type Default
value

QoS set

Reliability reliability bool false RELIABLE / BEST_EFFORT
Durability durability bool false TRANSIENT_LOCAL / VOLATILE
Ownership ownership bool false EXCLUSIVE_OWNERSHIP_QOS /

SHARED_OWNERSHIP_QOS
Partitions partitions bool false Topic with / without partitions
Key keyed bool false Topic with / without key
History Depth history-depthunsigned in-

teger
5000 History Depth

Max Reception
Rate

max-rx-rate float 0 (unlim-
ited)

Max Reception Rate

Downsampling downsampling unsigned in-
teger

1 Downsampling

Warning: Manually configuring TRANSIENT_LOCAL durability may lead to incompatibility issues when the dis-
covered reliability is BEST_EFFORT. Please ensure to always configure the reliability when configuring the
durability to avoid the issue.

18 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/topic.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/topic.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/typeSupport/typeSupport.html#data-types-with-a-key

DDS Record Replay Documentation, Release ..

History Depth

The history-depth tag configures the history depth of the Fast DDS internal entities. By default, the depth of every
RTPS History instance is 5000, which sets a constraint on the maximum number of samples a DDS Recorder instance
can deliver to late joiner Readers configured with TRANSIENT_LOCAL DurabilityQosPolicyKind. Its value should be
decreased when the sample size and/or number of created endpoints (increasing with the number of topics) are big
enough to cause memory exhaustion issues. If enough memory is available, however, the history-depth could be
increased to deliver a greater number of samples to late joiners.

Max Reception Rate

The max-rx-rate tag limits the frequency [Hz] at which samples are processed by discarding messages received
before 1/max-rx-rate seconds have passed since the last processed message. It only accepts non-negative numbers.
By default it is set to 0; it processes samples at an unlimited reception rate.

Downsampling

The downsampling tag reduces the sampling rate of the received data by only keeping 1 out of every n samples
received (per topic), where n is the value specified under the downsampling tag. When the max-rx-rate tag is also
set, downsampling only applies to messages that have passed the max-rx-rate filter. It only accepts positive integers.
By default it is set to 1; it accepts every message.

Manual Topics

A subset of Topic QoS can be manually configured for a specific topic under the tag topics. The tag topics has a
required name tag that accepts wildcard characters. It also has two optional tags: a type tag that accepts wildcard
characters, and a qos tag with the Topic QoS that the user wants to manually configure. If a qos is not manually
configured, it will get its value by discovery.

topics:
- name: "temperature/*"
type: "temperature/types/*"
qos:
max-rx-rate: 15
downsampling: 2

Note: The Topic QoS configured in the Manual Topics take precedence over the Specs Topic QoS.

Ignore Participant Flags

A set of discovery traffic filters can be defined in order to add an extra level of isolation. This configuration option can
be set through the ignore-participant-flags tag:

ignore-participant-flags: no_filter # No filter (default)
or
ignore-participant-flags: filter_different_host # Discovery traffic from␣
→˓another host is discarded

(continues on next page)

3.10. Configuration 19

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/core/policy/standardQosPolicies.html#durabilityqospolicykind

DDS Record Replay Documentation, Release ..

(continued from previous page)

or
ignore-participant-flags: filter_different_process # Discovery traffic from␣
→˓another process on same host is discarded
or
ignore-participant-flags: filter_same_process # Discovery traffic from␣
→˓own process is discarded
or
ignore-participant-flags: filter_different_and_same_process # Discovery traffic from␣
→˓own host is discarded

See Ignore Participant Flags for more information.

Custom Transport Descriptors

By default, DDS Recorder internal participants are created with enabled UDP and Shared Memory transport descrip-
tors. The use of one or the other for communication will depend on the specific scenario, and whenever both are viable
candidates, the most efficient one (Shared Memory Transport) is automatically selected. However, a user may desire
to force the use of one of the two, which can be accomplished via the transport configuration tag.

transport: builtin # UDP & SHM (default)
or
transport: udp # UDP only
or
transport: shm # SHM only

Warning: When configured with transport: shm, DDS Recorder will only communicate with applications
using Shared Memory Transport exclusively (with disabled UDP transport).

Interface Whitelist

Optional tag whitelist-interfaces allows to limit the network interfaces used by UDP and TCP transport. This
may be useful to only allow communication within the host (note: same can be done with Ignore Participant Flags).
Example:

whitelist-interfaces:
- "127.0.0.1" # Localhost only

See Interface Whitelist for more information.

20 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/general_disc_settings.html?highlight=ignore%20flags#ignore-participant-flags
https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/udp/udp.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/shared_memory/shared_memory.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/whitelist.html

DDS Record Replay Documentation, Release ..

Recorder Configuration

Configuration of data writing in the database.

Output File

The recorder output file does support the following configuration settings under the output tag:

Parameter Tag Description Data
type

Default value

File path path Configure the path to save the output file. string .
File name filename Configure the name of the output file. string output
Timestamp
format

timestamp-formatConfigure the format of the output file timestamp
(as in std::put_time).

string %Y-%m-%d_%H-%M-%S_%Z

Local times-
tamp

local-timestampWhether to use a local or global (GMT) timestamp. boolean true

When DDS Recorder application is launched (or when remotely controlled, every time a start/pause command is
received while in SUSPENDED/STOPPED state), a temporary file with filename name (+timestamp prefix) and .mcap.
tmp~ extension is created in path. This file is not readable until the application is terminated (or a suspend/stop/
close command is received). On such event, the temporal file is renamed to have .mcap extension in the same location,
and is then ready to be processed.

Buffer size

buffer-size indicates the number of samples to be stored in the process memory before the dump to disk. This avoids
disk access each time a sample is received. By default, its value is set to 100.

Event Window

DDS Recorder can be configured to continue saving data when it is in paused mode. Thus, when an event is triggered
from the remote controller, samples received in the last event-window seconds are stored in the database.

In other words, the event-window acts as a sliding time window that allows to save the collected samples in this time
window only when the remote controller event is received. By default, its value is set to 20 seconds.

Log Publish Time

By default (log-publish-time: false) received messages are stored in the MCAP file with logTime value equals
to the reception timestamp. Additionally, the timestamp corresponding to when messages were initially published
(publishTime) is also included in the information dumped to MCAP files. In some applications, it may be required
to use the publishTime as logTime, which can be achieved by providing the log-publish-time: true configu-
ration option.

3.10. Configuration 21

DDS Record Replay Documentation, Release ..

Only With Type

By default, all (allowed) received messages are recorded regardless of whether their associated type information
has been received. However, a user can enforce that only samples whose type is received are recorded by setting
only-with-type: true.

Compression

Compression settings for writing to an MCAP file can be specified under the compression configuration tag. The
supported compression options are:

Parameter Tag Description Data
type

De-
fault
value

Possible values

Com-
pression
Algorithm

algorithmCompression algorithm to use when writing
Chunks.

string zstd none lz4 zstd

Compres-
sion Level

level Compression level to use when writing
Chunks.

string default fastest fast
default slow
slowest

Force Com-
pression

force Force compression on all Chunks (even for
those that do not benefit from compression).

booleanfalse true false

Record Types

By default, all type information received during execution is stored in a dedicated MCAP file section. This information
is then leveraged by DDS Replayer on playback, publishing recorded types in addition to data samples, which may be
required for receiver applications relying on Dynamic Types (see Replay Types). However, a user may choose to disable
this feature by setting record-types: false.

Topic type format

The optional ros2-types tag enables specification of the format for storing schemas. When set to true, schemas are
stored in ROS 2 message format (.msg). If set to false, schemas are stored in OMG IDL format (.idl). By default it
is set to false.

Remote Controller

Configuration of the DDS remote control system. Please refer to Remote Control for further information on how to use
DDS Recorder remotely. The supported configurations are:

22 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

Parameter Tag Description Data
type

Default value Possible values

Enable enable Enable DDS remote control
system.

booleantrue true false

DDS Do-
main

domain DDS Domain of the DDS
remote control system.

integerDDS domain
being recorded

From 0 to 255

Initial state initial-stateInitial state of DDS
Recorder.

string RUNNING RUNNING PAUSED
SUSPENDED STOPPED

Command
Topic Name

command-topic-nameName of Controller Com-
mand DDS Topic.

string /
ddsrecorder/
command

Status Topic
Name

status-topic-nameName of Controller Status
DDS Topic.

string /
ddsrecorder/
status

Specs Configuration

The internals of a DDS Recorder can be configured using the specs optional tag that contains certain options related
with the overall configuration of the DDS Recorder instance to run. The values available to configure are:

Number of Threads

specs supports a threads optional value that allows the user to set a maximum number of threads for the internal
ThreadPool. This ThreadPool allows to limit the number of threads spawned by the application. This improves the
performance of the internal data communications.

This value should be set by each user depending on each system characteristics. In case this value is not set, the default
number of threads used is 12.

Maximum Number of Pending Samples

It is possible that a DDS Recorder starts receiving data from a topic that it has not yet registered, i.e. a topic for which
it does not know the data type. In this case, messages are kept in an internal circular buffer until their associated type
information is received, event on which they are written to disk.

However, the recorder execution might end before this event ever occurs. Depending on configuration (see Only With
Type), messages kept in the pending samples buffer will be stored or not on closure. Hence, note that memory con-
sumption would continuously grow whenever a sample with unknown type information is received.

To avoid the exhaustion of memory resources in such scenarios, a configuration option is provided which lets the user set
a limit on memory usage. The max-pending-samples parameter allows to configure the size of the aforementioned
circular buffers for each topic that is discovered. The default value is equal to 5000 samples, with -1 meaning no
limit, and 0 no pending samples.

Depending on the combination of this configuration option and the value of only-with-type, the following situations
may arise when a message with unknown type is received:

• If max-pending-samples is -1, or if it is greater than 0 and the circular buffer is not full, the sample is added
to the collection.

• If max-pending-samples is greater than 0 and the circular buffer reaches its maximum capacity, the oldest sam-
ple with same type as the received one is popped, and either written without type (only-with-type: false)
or discarded (only-with-type: true).

3.10. Configuration 23

DDS Record Replay Documentation, Release ..

• If max-pending-samples is 0, the message is written without type if only-with-type: false, and dis-
carded otherwise.

Cleanup Period

As explained in Event Window, a DDS Recorder in paused mode awaits for an event command to write in disk all
samples received in the last event-window seconds. To accomplish this, received samples are stored in memory
until the aforementioned event is triggered and, in order to limit memory consumption, outdated (received more than
event-window seconds ago) samples are removed from this buffer every cleanup-period seconds. By default, its
value is equal to twice the event-window.

QoS

specs supports a qos optional tag to configure the default values of the Topic QoS.

Note: The Topic QoS configured in specs can be overwritten by the Manual Topics.

Logging

specs supports a logging optional tag to configure the DDS Recorder logs. Under the logging tag, users can config-
ure the type of logs to display and filter the logs based on their content and category. When configuring the verbosity
to info, all types of logs, including informational messages, warnings, and errors, will be displayed. Conversely,
setting it to warning will only show warnings and errors, while choosing error will exclusively display errors. By
default, the filter allows all errors to be displayed, while selectively permitting warning and informational messages
from DDSRECORDER category.

Note: Configuring the logs via the Command-Line is still active and takes precedence over YAML configuration when
both methods are used simultaneously.

Log-
ging

Yaml
tag

Description Data
type

Default value Possible val-
ues

Ver-
bosity

verbosityShow messages of equal or
higher importance.

enum error info /
warning /
error

Filter filter Regex to filter the category or
message of the logs.

string info : DDSRECORDER warning :
DDSRECORDER error : ""

Regex string

Note: For the logs to function properly, the -DLOG_INFO=ON compilation flag is required.

The DDS Recorder prints the logs by default (warnings and errors in the standard error and infos in the standard output).
The DDS Recorder, however, can also publish the logs in a DDS topic. To publish the logs, under the tag publish, set
enable: true and set a domain and a topic-name. The type of the logs published is defined as follows:

LogEntry.idl

24 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

const long UNDEFINED = 0x10000000;
const long SAMPLE_LOST = 0x10000001;
const long TOPIC_MISMATCH_TYPE = 0x10000002;
const long TOPIC_MISMATCH_QOS = 0x10000003;
const long FAIL_MCAP_CREATION = 0x12000001;
const long FAIL_MCAP_WRITE = 0x12000002;

enum Kind {
Info,
Warning,
Error

};

struct LogEntry {
@key long event;
Kind kind;
string category;
string message;
string timestamp;

};

Note: The type of the logs can be published by setting publish-type: true.

Example of usage

logging:
verbosity: info
filter:
error: "DDSPIPE|DDSRECORDER"
warning: "DDSPIPE|DDSRECORDER"
info: "DDSRECORDER"

publish:
enable: true
domain: 84
topic-name: "DdsRecorderLogs"
publish-type: false

stdout: true

Monitor

specs supports a monitor optional tag to publish internal data from the DDS Recorder. If the monitor is enabled,
it publishes (and logs under the MONITOR_DATA log filter) the DDS Recorder’s internal data on a domain, under a
topic-name, once every period (in milliseconds). If the monitor is not enabled, the DDS Recorder will not collect
or publish any data.

Note: The data published is relative to each period. The DDS Recorder will reset its tracked data after publishing it.

In particular, the DDS Recorder can monitor its internal status and its topics. When monitoring its internal status, the
DDS Recorder will track different errors of the DDS Recorder. The type of the data published is defined as follows:

3.10. Configuration 25

DDS Record Replay Documentation, Release ..

DdsRecorderMonitoringStatus.idl

struct MonitoringErrorStatus {
boolean type_mismatch;
boolean qos_mismatch;

};

struct MonitoringStatus {
MonitoringErrorStatus error_status;
boolean has_errors;

};

struct DdsRecorderMonitoringErrorStatus {
boolean mcap_file_creation_failure;
boolean disk_full;

};

struct DdsRecorderMonitoringStatus : MonitoringStatus {
DdsRecorderMonitoringErrorStatus ddsrecorder_error_status;

};

When monitoring its topics, the DDS Recorder will track the number of messages lost, received, and the message
reception rate [Hz] of each topic. It will also track if a topic’s type is discovered, if there is a type mismatch, and if
there is a QoS mismatch. The type of the data published is defined as follows:

MonitoringTopics.idl

struct DdsTopicData
{

string participant_id;
unsigned long msgs_lost;
unsigned long msgs_received;
double msg_rx_rate;

};

struct DdsTopic
{

string name;
string type_name;
boolean type_discovered;
boolean type_mismatch;
boolean qos_mismatch;
sequence<DdsTopicData> data;

};

struct MonitoringTopics
{

sequence<DdsTopic> topics;
};

Example of usage

monitor:
domain: 10

(continues on next page)

26 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

(continued from previous page)

status:
enable: true
domain: 11
period: 2000
topic-name: "DdsRecorderStatus"

topics:
enable: true
domain: 12
period: 1500
topic-name: "DdsRecorderTopics"

General Example

A complete example of all the configurations described on this page can be found below.

Warning: This example can be used as a quick reference, but it may not be correct due to incompatibility or
exclusive properties. Do not take it as a working example.

dds:
domain: 0

allowlist:
- name: "topic_name"
type: "topic_type"

blocklist:
- name: "topic_name"
type: "topic_type"

builtin-topics:
- name: "HelloWorldTopic"
type: "HelloWorld"

topics:
- name: "temperature/*"
type: "temperature/types/*"
qos:
max-rx-rate: 15
downsampling: 2

ignore-participant-flags: no_filter
transport: builtin
whitelist-interfaces:
- "127.0.0.1"

recorder:
output:
filename: "output"

(continues on next page)

3.10. Configuration 27

DDS Record Replay Documentation, Release ..

(continued from previous page)

path: "."
timestamp-format: "%Y-%m-%d_%H-%M-%S_%Z"
local-timestamp: false

buffer-size: 50
event-window: 60
log-publish-time: false
only-with-type: false
compression:
algorithm: lz4
level: slowest
force: true

record-types: true
ros2-types: false

remote-controller:
enable: true
domain: 10
initial-state: "PAUSED"
command-topic-name: "/ddsrecorder/command"
status-topic-name: "/ddsrecorder/status"

specs:
threads: 8
max-pending-samples: 10
cleanup-period: 90

qos:
max-rx-rate: 20
downsampling: 3

logging:
verbosity: info
filter:
error: "DDSPIPE|DDSRECORDER"
warning: "DDSPIPE|DDSRECORDER"
info: "DDSRECORDER"

publish:
enable: true
domain: 84
topic-name: "DdsRecorderLogs"
publish-type: false

stdout: true

monitor:
domain: 10
topics:
enable: true
domain: 11
period: 1000
topic-name: "DdsRecorderTopics"

(continues on next page)

28 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

(continued from previous page)

status:
enable: true
domain: 12
period: 2000
topic-name: "DdsRecorderStatus"

3.10.2 Fast DDS Configuration

As explained in this section, a DDS Recorder instance stores (by default) all data regardless of whether their associated
data type is received or not. Some applications rely on this information being recorded and written in the resulting
MCAP file, which requires that the user application is configured to send the necessary type information. However,
Fast DDS does not send the data type information by default, it must be configured to do so.

First of all, when generating the topic types using eProsima Fast DDS Gen, the option -typeobject must be added
in order to generate the needed code to fill the TypeObject data.

For native types (data types that does not rely in other data types) this is enough, as Fast DDS will send the TypeObject
by default. However, for more complex types, it is required to use TypeInformation mechanism. In the Fast DDS
DomainParticipant set the following QoS in order to send this information:

DomainParticipantQos pqos;
pqos.wire_protocol().builtin.typelookup_config.use_server = true;

Feel free to review this section, where it is explained in detail how to configure a Fast DDS Publisher/Subscriber
leveraging Dynamic Types.

3.11 Remote Control

The DDS Recorder application from eProsima DDS Record & Replay allows remote control and monitoring of the
tool via DDS. Thus it is possible both to monitor the execution status of the DDS Recorder and to control the execution
status of this application.

Moreover, eProsima provides a remote controlling tool that allows to visualize the status of a DDS Recorder and to
send commands to it to change its current status.

This section explains the different execution states of a DDS Recorder, how to create your own tool using the DDS
topics that the application defines to control its behavior, and the presentation of the eProsima user application for the
remote control of the DDS Recorder.

3.11.1 DDS Recorder Statuses

The DDS Recorder application may have the following states:

• CLOSED: The application is not running. To start running the application it is required to launch it from the
terminal by executing ddsrecorder. Once the ddsrecorder application is executed, it will automatically go
into recording mode (RUNNING state), although this can be modified through the .yaml configuration file. Please
refer to the DDS Recorder remote controller configuration section for more options on the initial state of the
application.

• RUNNING: The application is running and recording data in the database.

3.11. Remote Control 29

DDS Record Replay Documentation, Release ..

• PAUSED: The application is running but not recording data in the database. In this state, the application stores
the data it has received in a time window prior to the current time. The data will not be saved to the database
until an event arrives from the remote controller.

• SUSPENDED: The application is running but not recording data. Internal entities are created and samples
received but discarded (advantage: lower latency in transition to RUNNING/PAUSED states).

• STOPPED: The application is running but not recording data. Internal entities are not created and thus no
samples are received.

To change from one state to another, commands can be sent to the application through the Controller Command DDS
topic to be defined later. The commands that the application accepts are as follows:

• start: Changes to RUNNING state if it was not in it.

• pause: Changes to PAUSED state if it was not in it.

• event: Triggers a recording event to save the data of the time window prior to the event. This command can take
the next state as an argument, so it is possible to trigger an event and change the state with the same command.
This is useful when the recorder is in a paused state, the user wants to record all the data collected in the current
time window and then immediately switch to RUNNING state to start recording data. It could also be the case
that the user wants to capture the event, save the data and then stop the recorder to inspect the output file. The
arguments are sent as a serialized json in string format.

• suspend: Changes to SUSPENDED state if it was not in it.

• stop: Changes to STOPPED state if it was not in it.

• close: Closes the DDS Recorder application.

The following is the state diagram of the DDS Recorder application with all the available commands and the state
change effect they cause.

3.11.2 DDS Controller Data Types

The DDS Recorder contains a DDS subscriber in the Controller Command topic and a DDS publisher in the Con-
troller Status topic. These topics’ names are by default /ddsrecorder/command and /ddsrecorder/status, re-
spectively, but can also be specified by users via the command-topic-name and status-topic-name configuration
tags. Therefore, any user can create his own application to control the DDS Recorder remotely by creating a publisher
in the Controller Command topic, which sends commands to the recorder, and a subscriber in the Controller Status
topic to monitor its status.

Note: Status and command topics are not blocked by default, i.e. messages on this topics will be recorded if listening
on the same domain the controller is launched. If willing to avoid this, include these topics in the blocklist:

dds:
blocklist:
- type: DdsRecorderStatus
- type: DdsRecorderCommand

The following is a description of the aforementioned control topics.

• Command topic:

– Topic name: Specified in command-topic-name configuration parameter (Default: /ddsrecorder/
command)

– Topic type name: DdsRecorderCommand

30 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.11. Remote Control 31

DDS Record Replay Documentation, Release ..

– Type description:

∗ IDL definition

struct DdsRecorderCommand
{

string command;
string args;

};

∗ DdsRecorderCommand type description:

Argument Description Data type Possible values
command Command to send. string start pause event

suspend stop close
args Arguments of the

command. This argu-
ments should contain
a JSON serialized
string.

string
· event command:
{"next_state":
"RUNNING"}
{"next_state":
"SUSPENDED"}
{"next_state":
"STOPPED"}

• Status topic:

– Topic name: Specified in status-topic-name configuration parameter (Default: /ddsrecorder/
status)

– Topic type name: DdsRecorderStatus

– Type description:

∗ IDL definition

struct DdsRecorderStatus
{

string previous;
string current;
string info;

};

∗ DdsRecorderStatus type description:

Argu-
ment

Description Data
type

Possible values

previous Previous status of the DDS Recorder. string RUNNING PAUSED
SUSPENDED STOPPED

current Current status of the DDS Recorder. string RUNNING PAUSED
SUSPENDED STOPPED

info Additional information related to the state
change. (Unused)

string -

32 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.11.3 DDS Recorder remote controller application

eProsima DDS Record & Replay provides a graphical user application that implements a remote controller for the DDS
Recorder. Thus the user can control a DDS Recorder instance using this application without having to implement their
own.

Note: If installing eProsima DDS Record & Replay from sources, compilation flag
-DBUILD_DDSRECORDER_CONTROLLER=ON is required to build this application.

Its interface is quite simple and intuitive. Once the application is launched, a layout as the following one should be
visible:

If the controller should function in a domain different than the default one (0), change it by clicking File->DDS Domain
and introducing the one desired:

It is also possible to use non-default status and command topic names through the File->DDS Topics dialog.

When a DDS Recorder instance is found in the domain, a message is displayed in the logging panel:

From this point on, it is possible to interact with the recorder application by pushing any of the buttons appearing on
the left. Every command sent is reflected in the logging panel and, additionally, the recorder application publishes
its current status with every state transition undergone. This can be observed in the eProsima DDS Recorder status
placeholder, located in the upper part of the layout:

By clicking on Suspend / Stop button, the recorder application ceases recording, but can be commanded to Start /
Pause whenever wished. Once the user has finished all recording activity, it is possible to Close the recorder and free
all resources used by the application:

Note that once CLOSED state has been reached, commands will no longer have an effect on the recorder application as
its process is terminated when a close command is received.

3.11. Remote Control 33

DDS Record Replay Documentation, Release ..

34 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.11. Remote Control 35

DDS Record Replay Documentation, Release ..

3.12 Getting Started

3.12.1 Project Overview

eProsima DDS Replayer is a cross-platform application that allows to play back messages recorded by a DDS Recorder
instance.

A user can configure a DDS Replayer instance differently depending on the scenario and purpose, being able to tune
parameters concerning the DDS layer as well as playback settings.

Among its many configuration options, the user is able to allow/block a set of topics, and/or define specific QoS (other
than the recorded ones) to be applied to certain topics. It is also possible to publish samples at a rate different than the
original one, filter messages according to its timestamp, or define a publication begin time, among others.

In addition, eProsima DDS Replayer is able to automatically send the type information recorded in a MCAP file, which
might be required for applications relying on Dynamic Types.

Usage Description

DDS Replayer is a terminal (non-graphical) application that creates a replay service given an input data file. Although
most use cases are covered by the default configuration, the DDS Replayer can be configured via a YAML file, whose
format is very intuitive and human-readable.

• Run: Only the command that launches the application (ddsreplayer) needs to be executed to run a DDS Re-
player. Please, read this section to apply a specific configuration, and this section to see the supported arguments.

• Interact: Once the DDS Replayer application is running, the allowlist and blocklist topic lists could be changed
in runtime by just changing the YAML configuration file.

• Close: To close the DDS Replayer application just send a Ctrl+C signal to terminate the process gracefully (see
Closing Replay Application).

Common Use cases

To get started with DDS Replayer, please visit section Example of usage.

3.12.2 Example of usage

This example will serve as a hands-on tutorial, aimed at introducing some of the key concepts and features that eProsima
DDS Record & Replay replay application (DDS Replayer or ddsreplayer) has to offer.

Prerequisites

It is required to have eProsima DDS Record & Replay previously installed using one of the following installation
methods:

• DDS Record & Replay on Windows

• DDS Record & Replay on Linux

• Docker Image (recommended)

Additionally, ShapesDemo is required to publish and subscribe shapes of different colors and sizes. Install it by fol-
lowing any of the methods described in the given links:

• Windows installation from binaries

36 Chapter 3. Structure of the documentation

https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo
https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/windows_binaries.html

DDS Record Replay Documentation, Release ..

• Linux installation from sources

• Docker Image

This is a follow-up tutorial, and assumes that DDS Recorder Example of usage has already been completed.

Start ShapesDemo

Let us launch a ShapesDemo instance and create a subscription in the Square topic with default settings.

Replayer configuration

The only configuration option required by a DDS Replayer is the path to an input MCAP file, which can be provided
both as a CLI argument or via YAML configuration. By default, all messages stored in the provided input file are played
back in DDS Domain 0, starting at the very moment the application is launched.

It is also possible to change the default configuration parameters by means of a YAML configuration file.

Note: Please refer to Configuration for more information on how to configure a DDS Replayer.

3.12. Getting Started 37

https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/linux_sources.html
https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/docker_image.html

DDS Record Replay Documentation, Release ..

Replayer execution

Launching a DDS Replayer instance is as easy as executing the following command:

ddsreplayer -i output_YYYY-MM-DD-DD_hh-mm-ss.mcap

In order to know all the possible arguments supported by this tool, use the command:

ddsreplayer --help

Execution will end once every message found in the given input file is played back, although it can also be terminated
with Ctrl+C at any point.

Next Steps

Feel free to experiment with the many configuration options available for a DDS Replayer instance. For example, you
may try to modify the playback rate, block/allow the Square topic in the middle of execution, or set a different topic
QoS configuration via the builtin-topics list.

3.13 Usage

eProsima DDS Replayer is a user application executed from command line.

• Starting Replay Application

• Closing Replay Application

• Replay Service Command-Line Parameters

38 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.13.1 Starting Replay Application

Docker Image

Warning: Currently, DDS Record & Replay Docker image only contains DDS Recorder tool, DDS Replay tool
application will be added soon.

The recommended method to run the DDS Replayer is to instantiate a Docker container of the DDS Record & Replay
image. Here are the instructions to download the compressed DDS Record & Replay Docker image and load it locally.

To run the DDS Replayer from a Docker container execute the following command:

docker run -it \
--net=host \
--ipc=host \
-v /<dds_replayer_ws>/DDS_REPLAYER_CONFIGURATION.yaml:/root/DDS_REPLAYER_

→˓CONFIGURATION.yaml \
ubuntu-ddsrecorder:v<X.X.X> ddsreplayer

Installation from sources

eProsima DDS Record & Replay depends on fastrtps, fastcdr and ddspipe libraries. In order to correctly execute
the replayer, make sure that fastrtps, fastcdr and ddspipe are properly sourced.

source <path-to-fastdds-installation>/install/setup.bash
source <path-to-ddspipe-installation>/install/setup.bash
source <path-to-ddsrecordreplay-installation>/install/setup.bash

Note: If Fast DDS, DDS Pipe and DDS Record & Replay have been installed in the system, these libraries would be
sourced by default.

To start eProsima DDS Replayer with a default configuration, enter:

ddsreplayer -i input_file.mcap

3.13.2 Closing Replay Application

SIGINT

To close eProsima DDS Replayer, press Ctrl+C. DDS Replayer will perform a clean shutdown.

3.13. Usage 39

DDS Record Replay Documentation, Release ..

SIGTERM

Write command kill <pid> in a different terminal, where <pid> is the id of the process running the DDS Replayer.
Use ps or top programs to check the process ids.

TIMEOUT

Setting a maximum amount of seconds that the application will work using argument --timeout will close the appli-
cation once the time has expired.

3.13.3 Replay Service Command-Line Parameters

The DDS Replayer application supports several input arguments:

Com-
mand

Description Option Pos-
sible
Values

Default Value

Help It shows the usage information of the application. -h
--help

Ver-
sion

It shows the current version of the DDS Replayer and the hash
of the last commit of the compiled code.

-v
--version

Input
File

Input MCAP file path. -i
--input-file

Con-
figu-
ration
File

Configuration file path. -c
--config-path

./
DDS_REPLAYER_CONFIGURATION.
yaml

Reload
Timer

The configuration file will be automatically reloaded according
to the specified time period.

-r
--reload-time

Un-
signed
Integer

0

Time-
out

Set a maximum time while the application will be running. 0
means that the application will run forever (until kill via signal).

-t
--timeout

Un-
signed
Integer

0

Debug Enables the DDS Replayer logs so the execution can be followed
by internal debugging information. Sets Log Verbosity to
info and Log Filter to DDSREPLAYER.

-d
--debug

Log
Ver-
bosity

Set the verbosity level so only log messages with equal or higher
importance level are shown.

--log-verbosityinfo
warning
error

warning

Log
Filter

Set a regex string as filter. --log-filterString "DDSREPLAYER"

40 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.14 Configuration

• DDS Replayer Configuration

– DDS Configuration

– Replay Configuration

– Specs Configuration

– General Example

3.14.1 DDS Replayer Configuration

A DDS Replayer is configured by a .yaml configuration file. This .yaml file contains all the information regarding the
DDS interface configuration, playback parameters, and DDS Replayer specifications. Thus, this file has four major
configuration groups:

• dds: configuration related to DDS communication.

• replayer: configuration with data playback parameters.

• specs: configuration of the internal operation of the DDS Replayer.

DDS Configuration

Configuration related to DDS communication.

DDS Domain

Tag domain configures the Domain Id.

domain: 101

Topic Filtering

The DDS Replayer automatically detects the topics that are being used in a DDS Network. The DDS Replayer then
creates internal DDS Writers to replay the data published on each topic. The DDS Replayer allows filtering DDS Topics
to allow users to configure the DDS Topics that must be replayed. These data filtering rules can be configured under
the allowlist and blocklist tags. If the allowlist and blocklist are not configured, the DDS Replayer will
replayed the data published on every topic it discovers. If both the allowlist and blocklist are configured and a
topic appears in both of them, the blocklist has priority and the topic will be blocked.

Topics are determined by the tags name (required) and type, both of which accept wildcard characters.

Note: Placing quotation marks around values in a YAML file is generally optional, but values containing wildcard
characters do require single or double quotation marks.

Consider the following example:

3.14. Configuration 41

DDS Record Replay Documentation, Release ..

allowlist:
- name: AllowedTopic1
type: Allowed

- name: AllowedTopic2
type: "*"

- name: HelloWorldTopic
type: HelloWorld

blocklist:
- name: "*"
type: HelloWorld

In this example, the data published in the topic AllowedTopic1 with type Allowed and in the topic AllowedTopic2
with any type will be replayed by the DDS Replayer. The data published in the topic HelloWorldTopic with type
HelloWorld will be blocked, since the blocklist is blocking all topics with any name and with type HelloWorld.

Topic QoS

The following is the set of QoS that are configurable for a topic. For more information on topics, please read the Fast
DDS Topic section.

Quality of Ser-
vice

Yaml tag Data type Default
value

QoS set

Reliability reliability bool false RELIABLE / BEST_EFFORT
Durability durability bool false TRANSIENT_LOCAL / VOLATILE
Ownership ownership bool false EXCLUSIVE_OWNERSHIP_QOS /

SHARED_OWNERSHIP_QOS
Partitions partitions bool false Topic with / without partitions
Key keyed bool false Topic with / without key
History Depth history-depthunsigned in-

teger
5000 History Depth

Max Transmission
Rate

max-tx-rate float 0 (unlim-
ited)

Max Transmission Rate

Warning: Manually configuring TRANSIENT_LOCAL durability may lead to incompatibility issues when the dis-
covered reliability is BEST_EFFORT. Please ensure to always configure the reliability when configuring the
durability to avoid the issue.

42 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/topic.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/topic.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/typeSupport/typeSupport.html#data-types-with-a-key

DDS Record Replay Documentation, Release ..

History Depth

The history-depth tag configures the history depth of the Fast DDS internal entities. By default, the depth of every
RTPS History instance is 5000, which sets a constraint on the maximum number of samples a DDS Replayer instance
can deliver to late joiner Readers configured with TRANSIENT_LOCAL DurabilityQosPolicyKind. Its value should be
decreased when the sample size and/or number of created endpoints (increasing with the number of topics) are big
enough to cause memory exhaustion issues. If enough memory is available, however, the history-depth could be
increased to deliver a greater number of samples to late joiners.

Max Transmission Rate

The max-tx-rate tag limits the frequency [Hz] at which samples are sent by discarding messages transmitted before
1/max-tx-rate seconds have passed since the last sent message. It only accepts non-negative numbers. By default it
is set to 0; it sends samples at an unlimited transmission rate.

Manual Topics

A subset of QoS can be manually configured for a specific topic under the tag topics. The tag topics has a required
name tag that accepts wildcard characters. It also has two optional tags: a type tag that accepts wildcard characters,
and a qos tag with the QoS that the user wants to manually configure. If a qos is not manually configured, it will get
its value by discovery.

Example of usage

topics:
- name: "temperature/*"
type: "temperature/types/*"
qos:
max-tx-rate: 15

Note: The Topic QoS configured in the Manual Topics take precedence over the Specs Topic QoS.

Ignore Participant Flags

A set of discovery traffic filters can be defined in order to add an extra level of isolation. This configuration option can
be set through the ignore-participant-flags tag:

ignore-participant-flags: no_filter # No filter (default)
or
ignore-participant-flags: filter_different_host # Discovery traffic from␣
→˓another host is discarded
or
ignore-participant-flags: filter_different_process # Discovery traffic from␣
→˓another process on same host is discarded
or
ignore-participant-flags: filter_same_process # Discovery traffic from␣
→˓own process is discarded
or
ignore-participant-flags: filter_different_and_same_process # Discovery traffic from␣
→˓own host is discarded (continues on next page)

3.14. Configuration 43

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/core/policy/standardQosPolicies.html#durabilityqospolicykind

DDS Record Replay Documentation, Release ..

(continued from previous page)

See Ignore Participant Flags for more information.

Custom Transport Descriptors

By default, DDS Replayer internal participants are created with enabled UDP and Shared Memory transport descriptors.
The use of one or the other for communication will depend on the specific scenario, and whenever both are viable
candidates, the most efficient one (Shared Memory Transport) is automatically selected. However, a user may desire
to force the use of one of the two, which can be accomplished via the transport configuration tag.

transport: builtin # UDP & SHM (default)
or
transport: udp # UDP only
or
transport: shm # SHM only

Warning: When configured with transport: shm, DDS Replayer will only communicate with applications
using Shared Memory Transport exclusively (with disabled UDP transport).

Interface Whitelist

Optional tag whitelist-interfaces allows to limit the network interfaces used by UDP and TCP transport. This
may be useful to only allow communication within the host (note: same can be done with Ignore Participant Flags).
Example:

whitelist-interfaces:
- "127.0.0.1" # Localhost only

See Interface Whitelist for more information.

Replay Configuration

Configuration of data playback settings.

Input File

The path to the file, set through the input-file configuration tag. When the input file is specified both through CLI
argument and YAML configuration file, the former takes precedence.

44 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/general_disc_settings.html?highlight=ignore%20flags#ignore-participant-flags
https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/udp/udp.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/shared_memory/shared_memory.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/whitelist.html

DDS Record Replay Documentation, Release ..

Begin Time

By default, all data stored in the provided MCAP file is played back. However, a user might be interested in only
replaying data relative to a specific time frame. begin-time and end-time configuration options can be leveraged
for this purpose, and their format is as follows:

Param-
eter

Tag Description Data
type

Default
value

Use lo-
cal time
zone

local Whether to interpret the provided datetime as local (true) or as a Green-
wich Mean Time (GMT/UTC +0) without Daylight Saving Time (DST)
considerations (false).

bool true

Date-
time
Format

format Format followed by the provided datetime. string"%Y-%m-%d_%H-%M-%S"

Date-
time

datetimeDatetime (seconds precision). string

Mil-
lisec-
onds

millisecondsMilliseconds. integer0

Mi-
crosec-
onds

microsecondsMicroseconds. integer0

Nanosec-
onds

nanosecondsNanoseconds. integer0

Messages recorded/sent (see Log Publish Time) before begin-time will not be played back by a DDS Replayer in-
stance.

End Time

As with begin-time, a user can discard messages recorded/sent after a specific timepoint set through the end-time
tag, which follows the format described in Begin Time.

Start Replay Time

This configuration option (start-replay-time) allows to start replaying data at a certain timepoint following the
format described in Begin Time. If the provided timepoint already expired, the replayer starts publishing messages
right away.

Playback Rate

By default, data is replayed at the same rate it was published/received. However, a user might be interested in playing
messages back at a rate different than the original one. This can be accomplished through the playback rate tag, which
accepts positive float values (e.g. 0.5 <–> half speed || 2 <–> double speed).

3.14. Configuration 45

DDS Record Replay Documentation, Release ..

Replay Types

By default, a DDS Replayer instance automatically sends all type information found in the provided MCAP file, which
might be required for applications relying on Dynamic Types. Nonetheless, a user can choose to avoid this by setting
replay-types: false, so only data samples are sent while their associated type information is disregarded.

Specs Configuration

The internals of a DDS Replayer can be configured using the specs optional tag that contains certain options related
with the overall configuration of the DDS Replayer instance to run. The values available to configure are:

Number of Threads

specs supports a threads optional value that allows the user to set a maximum number of threads for the internal
ThreadPool. This ThreadPool allows to limit the number of threads spawned by the application. This improves the
performance of the internal data communications.

This value should be set by each user depending on each system characteristics. In case this value is not set, the default
number of threads used is 12.

Wait-for-acknowledgement Timeout

The execution of a DDS Replayer instance ends when the last message contained in the provided input file is published
(or the user manually aborts the process, see Closing Replay Application). Note that this last message might be lost after
publication, and if reliable Reliability QoS is being used, a mechanism should be established to avoid this problematic
situation. For this purpose, the user can specify the maximum amount of milliseconds (wait-all-acked-timeout)
to wait on closure until published messages are acknowledged by matched readers. Its value is set to 0 by default (no
wait).

QoS

specs supports a qos optional tag to configure the default values of the Topic QoS.

Note: The Topic QoS configured in specs can be overwritten by the Manual Topics.

Logging

specs supports a logging optional tag to configure the DDS Replayer logs. Under the logging tag, users can config-
ure the type of logs to display and filter the logs based on their content and category. When configuring the verbosity
to info, all types of logs, including informational messages, warnings, and errors, will be displayed. Conversely,
setting it to warning will only show warnings and errors, while choosing error will exclusively display errors. By
default, the filter allows all errors to be displayed, while selectively permitting warning and informational messages
from DDSREPLAYER category.

logging:
verbosity: info
filter:

(continues on next page)

46 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/core/policy/standardQosPolicies.html#reliabilityqospolicy

DDS Record Replay Documentation, Release ..

(continued from previous page)

error: "DDSPIPE|DDSREPLAYER"
warning: "DDSPIPE|DDSREPLAYER"
info: "DDSREPLAYER"

Note: Configuring the logs via the Command-Line is still active and takes precedence over YAML configuration when
both methods are used simultaneously.

Log-
ging

Yaml
tag

Description Data
type

Default value Possible val-
ues

Ver-
bosity

verbosityShow messages of equal or
higher importance.

enum error info /
warning /
error

Filter filter Regex to filter the category or
message of the logs.

string info : DDSREPLAYER warning :
DDSREPLAYER error : ""

Regex string

Note: For the logs to function properly, the -DLOG_INFO=ON compilation flag is required.

The DDS Replayer prints the logs by default (warnings and errors in the standard error and infos in the standard output).
The DDS Replayer, however, can also publish the logs in a DDS topic. To publish the logs, under the tag publish, set
enable: true and set a domain and a topic-name. The type of the logs published is defined as follows:

LogEntry.idl

const long UNDEFINED = 0x10000000;
const long SAMPLE_LOST = 0x10000001;
const long TOPIC_MISMATCH_TYPE = 0x10000002;
const long TOPIC_MISMATCH_QOS = 0x10000003;

enum Kind {
Info,
Warning,
Error

};

struct LogEntry {
@key long event;
Kind kind;
string category;
string message;
string timestamp;

};

Note: The type of the logs can be published by setting publish-type: true.

Example of usage

3.14. Configuration 47

DDS Record Replay Documentation, Release ..

logging:
verbosity: info
filter:
error: "DDSPIPE|FASTDDSSPY"
warning: "DDSPIPE|FASTDDSSPY"
info: "FASTDDSSPY"

publish:
enable: true
domain: 84
topic-name: "FastDdsSpyLogs"
publish-type: false

stdout: true

General Example

A complete example of all the configurations described on this page can be found below.

Warning: This example can be used as a quick reference, but it may not be correct due to incompatibility or
exclusive properties. Do not take it as a working example.

dds:
domain: 0

allowlist:
- name: "topic_name"
type: "topic_type"

blocklist:
- name: "topic_name"
type: "topic_type"

topics:
- name: "temperature/*"
type: "temperature/types/*"
qos:
max-tx-rate: 15

ignore-participant-flags: no_filter
transport: builtin
whitelist-interfaces:
- "127.0.0.1"

replayer:
input-file: my_input.mcap

begin-time:
local: true
datetime: 2023-04-10_10-37-50
milliseconds: 100
nanoseconds: 50

(continues on next page)

48 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

(continued from previous page)

end-time:
format: "%H-%M-%S_%Y-%m-%d"
local: true
datetime: 10-39-11_2023-04-10
milliseconds: 200

start-replay-time:
local: true
datetime: 2023-04-12_12-00-00
milliseconds: 500

rate: 1.4
replay-types: true

specs:
threads: 8
wait-all-acked-timeout: 10

qos:
max-tx-rate: 20

logging:
verbosity: info
filter:
error: "DDSPIPE|DDSREPLAYER"
warning: "DDSPIPE|DDSREPLAYER"
info: "DDSREPLAYER"

publish:
enable: true
domain: 84
topic-name: "FastDdsSpyLogs"
publish-type: false

stdout: true

3.15 Configuring Fast DDS DynamicTypes

• Background

• Prerequisites

• Generating data types

• DDS Publisher

– Data types

– Examining the code

• DDS Subscriber

– Examining the code

3.15. Configuring Fast DDS DynamicTypes 49

DDS Record Replay Documentation, Release ..

• Running the application

3.15.1 Background

As explained in this section, a DDS Recorder instance stores (by default) all data regardless of whether their associated
data type is received or not. However, some applications require this information to be recorded and written in the
resulting MCAP file, and for this to occur the publishing applications must send it via Dynamic Types.

This tutorial focuses on how to send the data type information using Fast DDS DynamicTypes and other relevant aspects
of DynamicTypes. More specifically, this tutorial implements a DDS Publisher configured to send its data type, a DDS
Subscriber that collects the data type and is able to read the incoming data, and a DDS Recorder is launched to save
all the data published on the network. For more information about how to create the workspace with a basic DDS
Publisher and a basic DDS Subscriber, please refer to Writing a simple C++ publisher and subscriber application .

The source code of this tutorial can be found in the public eProsima DDS Record & Replay GitHub repository with an
explanation of how to build and run it.

Warning: This tutorial works with this branch of Fast DDS.

3.15.2 Prerequisites

Ensure that eProsima DDS Record & Replay is installed together with eProsima dependencies, i.e. Fast DDS, Fast
CDR and DDS Pipe.

If eProsima DDS Record & Replay was installed using the recommended installation the environment is sourced by
default, otherwise, just remember to source it in every terminal in this tutorial:

source <path-to-fastdds-installation>/install/setup.bash
source <path-to-ddspipe-installation>/install/setup.bash
source <path-to-ddsrecordreplay-installation>/install/setup.bash

3.15.3 Generating data types

eProsima Fast DDS-Gen is a Java application that generates eProsima Fast DDS source code using the data types
defined in an IDL (Interface Definition Language) file. When generating the Types using eProsima Fast DDS Gen, the
option -typeobject must be added in order to generate the needed code to fill the TypeInformation data.

The expected argument list of the application is:

fastddsgen -typeobject MyType.idl

50 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/simple_app/simple_app.html
https://github.com/eProsima/DDS-Record-Replay/tree/v0.4.0/resources/dds/TypeLookupService
https://github.com/eProsima/Fast-DDS/tree/bugfix/complex-dynamic-types
https://dds-recorder.readthedocs.io/en/latest/rst/installation/docker.html
https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html

DDS Record Replay Documentation, Release ..

3.15.4 DDS Publisher

The DDS publisher will be configured to act as a server of the data types of the data it publishes.

However, Fast DDS does not send the data type information by default, it must be configured to do so.

Data types

At the moment, there are two data types that can be used:

• HelloWorld.idl

struct HelloWorld
{

unsigned long index;
string message;

};

• Complete.idl

struct Timestamp
{

long seconds;
long milliseconds;

};

struct Point
{

long x;
long y;
long z;

};

struct MessageDescriptor
{

unsigned long id;
string topic;
Timestamp time;

};

struct Message
{

MessageDescriptor descriptor;
string message;

};

struct CompleteData
{

unsigned long index;
Point main_point;
sequence<Point> internal_data;
Message messages[2];

};

3.15. Configuring Fast DDS DynamicTypes 51

https://github.com/eProsima/DDS-Record-Replay/blob/v0.4.0/resources/dds/TypeLookupService/types/hello_world/HelloWorld.idl
https://github.com/eProsima/DDS-Record-Replay/blob/v0.4.0/resources/dds/TypeLookupService/types/complete/Complete.idl

DDS Record Replay Documentation, Release ..

Examining the code

This section explains the C++ source code of the DDS Publisher, which can also be found here.

The private data members of the class defines the DDS Topic, DataTypeKind, DDS Topic type and DynamicType.
The DataTypeKind defines the type to be used by the application (HelloWorld or Complete). For simplicity, this
tutorial only covers the code related to the HelloWorld type.

//! Name of the DDS Topic
std::string topic_name_;
//! The user can choose between HelloWorld and Complete types so this defines the␣

→˓chosen type
DataTypeKind data_type_kind_;
//! Name of the DDS Topic type according to the DataTypeKind
std::string data_type_name_;
//! Actual DynamicType generated according to the DataTypeKind
eprosima::fastrtps::types::DynamicType_ptr dynamic_type_;

The next lines show the constructor of the TypeLookupServicePublisher class that implements the publisher. The
publisher is created with the topic and data type to use.

TypeLookupServicePublisher::TypeLookupServicePublisher(
const std::string& topic_name,
const uint32_t domain,
DataTypeKind data_type_kind)

: participant_(nullptr)
, publisher_(nullptr)
, topic_(nullptr)
, datawriter_(nullptr)
, topic_name_(topic_name)
, data_type_kind_(data_type_kind)

Inside the TypeLookupServicePublisher constructor are defined the DomainParticipantQos. As the publisher act
as a server of types, its QoS must be configured to send this information. Set use_client to false and use_server
to true.

DomainParticipantQos pqos;
pqos.name("TypeLookupService_Participant_Publisher");

pqos.wire_protocol().builtin.typelookup_config.use_client = false;
pqos.wire_protocol().builtin.typelookup_config.use_server = true;

Next, we register the type in the participant:

1. Generate the dynamic type through generate_helloworld_type_() explained below.

2. Set the data type.

3. Create the TypeSupport with the dynamic type previously created.

4. Configure the type to fill automatically the TypeInformation and not TypeObject to be compliant with DDS-
XTypes 1.2. standard.

switch (data_type_kind_)
{

case DataTypeKind::HELLO_WORLD:
(continues on next page)

52 Chapter 3. Structure of the documentation

https://github.com/eProsima/DDS-Record-Replay/blob/v0.4.0/resources/dds/TypeLookupService
https://www.omg.org/spec/DDS-XTypes/1.2
https://www.omg.org/spec/DDS-XTypes/1.2

DDS Record Replay Documentation, Release ..

(continued from previous page)

dynamic_type_ = generate_helloworld_type_();
data_type_name_ = HELLO_WORLD_DATA_TYPE_NAME;
break;

case DataTypeKind::COMPLETE:
dynamic_type_ = generate_complete_type_();
data_type_name_ = COMPLETE_DATA_TYPE_NAME;
break;

default:
throw std::runtime_error("Not recognized DynamicType kind");
break;

}

TypeSupport type(new eprosima::fastrtps::types::DynamicPubSubType(dynamic_type_));

// Send type information so the type can be discovered
type->auto_fill_type_information(true);
type->auto_fill_type_object(false);

// Register the type in the Participant
participant_->register_type(type);

The function generate_helloworld_type_() returns the dynamic type generated with the TypeObject and
TypeIdentifier of the type.

eprosima::fastrtps::types::DynamicType_ptr
TypeLookupServicePublisher::generate_helloworld_type_() const

{
// Generate HelloWorld type using methods from Fast DDS Gen autogenerated code
registerHelloWorldTypes();

// Get the complete type object and type identifier of the dynamic type
auto type_object = GetHelloWorldObject(true);
auto type_id = GetHelloWorldIdentifier(true);

// Use data type name, type identifier and type object to build the dynamic type
return eprosima::fastrtps::types::TypeObjectFactory::get_instance()->build_dynamic_

→˓type(
HELLO_WORLD_DATA_TYPE_NAME,
type_id,
type_object);

}

Then we initialized the Publisher, DDS Topic and DDS DataWriter.

To make the publication, the public member function publish() is implemented:

1. It creates the variable that will contain the user data, dynamic_data_.

2. Fill that variable with the function fill_helloworld_data_(msg), explained below.

void TypeLookupServicePublisher::publish(unsigned int msg_index)
{

// Get the dynamic data depending on the data type
eprosima::fastrtps::types::DynamicData_ptr dynamic_data_;

(continues on next page)

3.15. Configuring Fast DDS DynamicTypes 53

DDS Record Replay Documentation, Release ..

(continued from previous page)

switch (data_type_kind_)
{
case DataTypeKind::HELLO_WORLD:

dynamic_data_ = fill_helloworld_data_(msg_index);
break;

case DataTypeKind::COMPLETE:
dynamic_data_ = fill_complete_data_(msg_index);
break;

default:
throw std::runtime_error("Not recognized DynamicType kind");
break;

}

// Publish data
datawriter_->write(dynamic_data_.get());

// Print the message published
std::cout << "Message published: " << std::endl;
eprosima::fastrtps::types::DynamicDataHelper::print(dynamic_data_);
std::cout << "---" << std::endl;

}

The function fill_helloworld_data_() returns the data to be sent with the information filled in.

First, the Dynamic_ptr that will be filled in and returned is created. Using the DynamicDataFactory we create the
data that corresponds to our data type. Finally, data variables are assigned, in this case, index and message.

eprosima::fastrtps::types::DynamicData_ptr
TypeLookupServicePublisher::fill_helloworld_data_(

const unsigned int& index)
{

// Create and initialize new dynamic data
eprosima::fastrtps::types::DynamicData_ptr new_data;
new_data = eprosima::fastrtps::types::DynamicDataFactory::get_instance()->create_

→˓data(dynamic_type_);

// Set index
new_data->set_uint32_value(index, 0);
// Set message
new_data->set_string_value("Hello World", 1);

return new_data;
}

54 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

3.15.5 DDS Subscriber

The DDS Subscriber is acting as a client of types, i.e. the subscriber will not know the types beforehand and it will
discovery the data type via the type lookup service implemented on the publisher side.

Examining the code

This section explains the C++ source code of the DDS Subscriber, which can also be found here.

The private data members of the class defines the DDS Topic, DDS Topic type and DynamicType.

//! Name of the DDS Topic
std::string topic_name_;
//! Name of the received DDS Topic type
std::string type_name_;
//! DynamicType generated with the received type information
eprosima::fastrtps::types::DynamicType_ptr dynamic_type_;

The next lines show the constructor of the TypeLookupServiceSubscriber class that implements the subscriber
setting the topic name as the one configured in the publisher side.

TypeLookupServiceSubscriber::TypeLookupServiceSubscriber(
const std::string& topic_name,
uint32_t domain)

: participant_(nullptr)
, subscriber_(nullptr)
, topic_(nullptr)
, datareader_(nullptr)
, topic_name_(topic_name)
, samples_(0)

The DomainParticipantQos are defined inside the TypeLookupServiceSubscriber constructor. As the sub-
scriber act as a client of types, set the QoS in order to receive this information. Set use_client to true and
use_server to false.

DomainParticipantQos pqos;
pqos.name("TypeLookupService_Participant_Subscriber");

pqos.wire_protocol().builtin.typelookup_config.use_client = true;
pqos.wire_protocol().builtin.typelookup_config.use_server = false;

Then, the Subscriber is initialized.

Inside on_data_available() callback function the DynamicData_ptr is created, which will be filled with the actual
data received.

As in the subscriber, the DynamicDataFactory is used for the creation of the data that corresponds to our data type.

void TypeLookupServiceSubscriber::on_data_available(
DataReader* reader)

{
// Create a new DynamicData to read the sample
eprosima::fastrtps::types::DynamicData_ptr new_dynamic_data;
new_dynamic_data = eprosima::fastrtps::types::DynamicDataFactory::get_instance()->

→˓create_data(dynamic_type_);
(continues on next page)

3.15. Configuring Fast DDS DynamicTypes 55

https://github.com/eProsima/DDS-Record-Replay/blob/v0.4.0/resources/dds/TypeLookupService

DDS Record Replay Documentation, Release ..

(continued from previous page)

SampleInfo info;

// Take next sample until we've read all samples or the application stopped
while ((reader->take_next_sample(new_dynamic_data.get(), &info) == ReturnCode_

→˓t::RETCODE_OK) && !is_stopped())
{

if (info.instance_state == ALIVE_INSTANCE_STATE)
{

samples_++;

std::cout << "Message " << samples_ << " received:\n" << std::endl;
eprosima::fastrtps::types::DynamicDataHelper::print(new_dynamic_data);
std::cout << "---" <<␣

→˓std::endl;

// Stop if all expecting messages has been received (max_messages number␣
→˓reached)

if (max_messages_ > 0 && (samples_ >= max_messages_))
{

stop();
}

}
}

}

The function on_type_information_received() detects if new topic information has been received in order to
proceed to register the topic in case it has the same name as the expected one. To register a remote topic, function
register_remote_type_callback_() is used. Once the topic has been discovered and registered, it is created a
DataReader on this topic.

void TypeLookupServiceSubscriber::on_type_information_received(
eprosima::fastdds::dds::DomainParticipant*,
const eprosima::fastrtps::string_255 topic_name,
const eprosima::fastrtps::string_255 type_name,
const eprosima::fastrtps::types::TypeInformation& type_information)

{
// First check if the topic received is the one we are expecting
if (topic_name.to_string() != topic_name_)
{

std::cout <<
"Discovered type information from topic < " << topic_name.to_string() <<
" > while expecting < " << topic_name_ << " >. Skipping..." << std::endl;

return;
}

// Set the topic type as discovered
bool already_discovered = type_discovered_.exchange(true);
if (already_discovered)
{

return;
}

(continues on next page)

56 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

(continued from previous page)

std::cout <<
"Found type in topic < " << topic_name_ <<
" > with name < " << type_name.to_string() <<
" > by lookup service. Registering..." << std::endl;

// Create the callback to register the remote dynamic type
std::function<void(const std::string&, const eprosima::fastrtps::types::DynamicType_

→˓ptr)> callback(
[this]
(const std::string& name, const eprosima::fastrtps::types::DynamicType_ptr␣

→˓type)
{

this->register_remote_type_callback_(name, type);
});

// Register the discovered type and create a DataReader on this topic
participant_->register_remote_type(

type_information,
type_name.to_string(),
callback);

}

The function register_remote_type_callback_(), which is in charge of register the topic received, is explained
below. First, it creates a TypeSupport with the corresponding type and registers it into the participant. Then, it creates
the DDS Topic with the topic name set in the creation of the Subscriber and the topic type previously registered. Finally,
it creates the DataReader of that topic.

void TypeLookupServiceSubscriber::register_remote_type_callback_(
const std::string&,
const eprosima::fastrtps::types::DynamicType_ptr dynamic_type)

{
////////////////////
// Register the type
TypeSupport type(new eprosima::fastrtps::types::DynamicPubSubType(dynamic_type));
type.register_type(participant_);

///////////////////////
// Create the DDS Topic
topic_ = participant_->create_topic(

topic_name_,
dynamic_type->get_name(),
TOPIC_QOS_DEFAULT);

if (topic_ == nullptr)
{

return;
}

////////////////////////
// Create the DataReader
datareader_ = subscriber_->create_datareader(

(continues on next page)

3.15. Configuring Fast DDS DynamicTypes 57

DDS Record Replay Documentation, Release ..

(continued from previous page)

topic_,
DATAREADER_QOS_DEFAULT,
this);

3.15.6 Running the application

Open two terminals:

• In the first terminal, run the DDS Publisher:

source install/setup.bash
cd DDS-Record-Replay/build/TypeLookupService
./TypeLookupService --entity publisher

• In the second terminal, run the DDS Subscriber:

source install/setup.bash
cd DDS-Record-Replay/build/TypeLookupService
./TypeLookupService --entity subscriber

At this point, we observe that the data published reach the subscriber and it can access to the content of the sample
received.

3.16 Visualize data with Foxglove

• Background

• Prerequisites

• Configuring DDS Recorder

• Running the application

– Start ShapesDemo

– Recorder execution

– Visualize data with Foxglove Studio

3.16.1 Background

This tutorial explains how to record data with DDS Recorder tool and visualize it with Foxglove Studio.

58 Chapter 3. Structure of the documentation

https://foxglove.dev/studio

DDS Record Replay Documentation, Release ..

3.16. Visualize data with Foxglove 59

DDS Record Replay Documentation, Release ..

3.16.2 Prerequisites

It is required to have eProsima DDS Record & Replay previously installed using one of the following installation
methods:

• DDS Record & Replay on Windows

• DDS Record & Replay on Linux

• Docker Image (recommended)

Additionally, we will use ShapesDemo as a DDS Demo application to publish the data that will be recorded. This
application is already prepared to use Fast DDS DynamicTypes, which is required when using the DDS Recorder tool.
Download eProsima Shapes Demo from eProsima website or install it by following any of the methods described in
the given links:

• Windows installation from binaries

• Linux installation from sources

• Docker Image

3.16.3 Configuring DDS Recorder

The DDS Recorder runs with default configuration parameters, but can also be configured via a YAML file. In this
tutorial we will use a configuration file to change some default parameters and show how this file is loaded. The
configuration file to be used is the following:

dds:
domain: 0

recorder:
output:
filename: "shapesdemo_data"
path: "."

The previous configuration file configures a recorder in DDS Domain 0 and save the output file as
shapesdemo_data_<YYYY-MM-DD_hh-mm-ss>.mcap, being <YYYY-MM-DD_hh-mm-ss> the timestamp of the time
at which the DDS Recorder started recording.

Create a new file named conf.yaml and copy the above snippet into this file.

3.16.4 Running the application

Start ShapesDemo

Launch eProsima Shapes Demo application running the following command:

ShapesDemo

Start publishing in topics Square, Triangle, and Circle with default settings:

60 Chapter 3. Structure of the documentation

https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo
https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo
https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/windows_binaries.html
https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/linux_sources.html
https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/docker_image.html

DDS Record Replay Documentation, Release ..

3.16. Visualize data with Foxglove 61

DDS Record Replay Documentation, Release ..

Recorder execution

Launch the DDS Recorder tool passing the configuration file as an argument:

ddsrecorder -c <path/to/config/file>/conf.yaml

Once you have all the desired data, close the DDS Recorder application with Ctrl+C.

Important: Please remember to close the DDS Recorder application before accessing the output file as the .mcap file
needs to be properly closed.

Visualize data with Foxglove Studio

Finally, we will show how to load the generated MCAP file into Foxglove Studio in order to display the saved data.

1. Open Foxglove Studio web application using Google Chrome or download the desktop application from their
Foxglove website. We recommend to use the web application as the it is usually up to date with the latest features.

2. Click Open local file and load the .mcap file previously created: shapesdemo_data.mcap.

3. Once the .mcap file is loaded, create your own layout with custom panels to visualize the recorded data. The
image below shows an example of a dashboard with several panels for data introspection.

Feel free to further explore the number of possibilities that eProsima DDS Recorder and Foxglove Studio together have
to offer.

62 Chapter 3. Structure of the documentation

https://studio.foxglove.dev/
https://foxglove.dev/

DDS Record Replay Documentation, Release ..

3.17 Linux installation from sources

The instructions for installing the eProsima DDS Record & Replay from sources and its required dependencies are
provided in this page. It is organized as follows:

• Dependencies installation

– Requirements

– Dependencies

• Colcon installation (recommended)

• CMake installation

– Local installation

– Global installation

• Run an application

3.17.1 Dependencies installation

DDS Record & Replay depends on eProsima Fast DDS library and certain Debian packages. This section describes the
instructions for installing DDS Record & Replay dependencies and requirements in a Linux environment from sources.
The following packages will be installed:

• foonathan_memory_vendor, an STL compatible C++ memory allocation library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

• cmake_utils, an eProsima utils library for CMake.

• cpp_utils, an eProsima utils library for C++.

• ddspipe, an eProsima internal library that enables the communication of DDS interfaces.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

Requirements

The installation of eProsima DDS Record & Replay in a Linux environment from sources requires the following tools
to be installed in the system:

• CMake, g++, pip, wget and git

• Colcon [optional]

• Fast DDS Python [for remote controller only]

• Gtest [for test only]

3.17. Linux installation from sources 63

DDS Record Replay Documentation, Release ..

CMake, g++, pip, wget and git

These packages provide the tools required to install eProsima DDS Record & Replay and its dependencies from com-
mand line. Install CMake, g++, pip, wget and git using the package manager of the appropriate Linux distribution. For
example, on Ubuntu use the command:

sudo apt install cmake g++ pip wget git

Colcon

colcon is a command line tool based on CMake aimed at building sets of software packages. Install the ROS 2 devel-
opment tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

Fast DDS Python

eProsima Fast DDS Python is a Python binding for the eProsima Fast DDS C++ library. It is only required for the
remote controller application.

Clone the Github repository into the eProsima DDS Record & Replay workspace and compile it with colcon as a
dependency package. Use the following command to download the code:

git clone https://github.com/eProsima/Fast-DDS-python.git src/Fast-DDS-python

Gtest

Gtest is a unit testing library for C++. By default, eProsima DDS Record & Replay does not compile tests. It is possible
to activate them with the opportune CMake options when calling colcon or CMake. For more details, please refer to the
CMake options section. For a detailed description of the Gtest installation process, please refer to the Gtest Installation
Guide.

It is also possible to clone the Gtest Github repository into the eProsima DDS Record & Replay workspace and compile
it with colcon as a dependency package. Use the following command to download the code:

git clone --branch release-1.11.0 https://github.com/google/googletest src/googletest-
→˓distribution

64 Chapter 3. Structure of the documentation

https://cmake.org
https://gcc.gnu.org/
https://pypi.org/project/pip/
https://www.gnu.org/software/wget/
https://git-scm.com/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/
https://github.com/eProsima/Fast-DDS-python/
https://colcon.readthedocs.io/en/released/
https://github.com/google/googletest
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://colcon.readthedocs.io/en/released/

DDS Record Replay Documentation, Release ..

Dependencies

eProsima DDS Record & Replay has the following dependencies, when installed from sources in a Linux environment:

• Asio and TinyXML2 libraries

• OpenSSL

• yaml-cpp

• SWIG [for remote controller only]

• PyQt6 [for remote controller only]

• MCAP dependencies

• eProsima dependencies

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using the package
manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libssl-dev

yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Record & Replay
application to parse the provided configuration files. Install yaml-cpp using the package manager of the appropriate
Linux distribution. For example, on Ubuntu use the command:

sudo apt install libyaml-cpp-dev

SWIG

SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level program-
ming languages. It is leveraged by Fast DDS Python to generate a Python wrapper over Fast DDS library. SWIG is only
a requirement for the remote controller application. It can be installed using the package manager of the appropriate
Linux distribution. For example, on Ubuntu use the command:

sudo apt install swig libpython3-dev

3.17. Linux installation from sources 65

https://www.openssl.org/
https://www.swig.org

DDS Record Replay Documentation, Release ..

PyQt6

The eProsima DDS Record & Replay remote controller is a graphical user interface application implemented in Python
using PyQt6. To install PyQt6 simply run:

pip3 install PyQt6

Note: To install PyQt6 on Ubuntu 20.04, update pip and setuptools packages first.

python3 -m pip install pip setuptools --upgrade

MCAP dependencies

MCAP is a modular container format and logging library for pub/sub messages with arbitrary message serialization.
It is primarily intended for use in robotics applications, and works well under various workloads, resource constraints,
and durability requirements. MCAP C++ library is packed within DDS Record & Replay as a header-only, but its
dependencies need to be installed using the package manager of the appropriate Linux distribution. For example, on
Ubuntu use the command:

sudo apt install liblz4-dev libzstd-dev

Note: To work with MCAP files via command line interface, you can use MCAP CLI <https://mcap.dev/guides/cli>
_ to manage the data in MCAP files.

eProsima dependencies

If it already exists in the system an installation of Fast DDS and DDS Pipe libraries, just source this libraries when
building eProsima DDS Record & Replay by running the following commands. In other case, just skip this step.

source <fastdds-installation-path>/install/setup.bash
source <ddspipe-installation-path>/install/setup.bash

3.17.2 Colcon installation (recommended)

1. Create a DDS-Record-Replay directory and download the .repos file that will be used to install eProsima
DDS Record & Replay and its dependencies:

mkdir -p ~/DDS-Record-Replay/src
cd ~/DDS-Record-Replay
wget https://raw.githubusercontent.com/eProsima/DDS-Record-Replay/v0.4.0/
→˓ddsrecordreplay.repos
vcs import src < ddsrecordreplay.repos

Note: In case there is already a Fast DDS installation in the system it is not required to download and build
every dependency in the .repos file. It is just needed to download and build the eProsima DDS Record &

66 Chapter 3. Structure of the documentation

https://pypi.org/project/PyQt6/
https://github.com/foxglove/mcap

DDS Record Replay Documentation, Release ..

Replay project having sourced its dependencies. Refer to section eProsima dependencies in order to check how
to source Fast DDS library.

2. Build the packages:

colcon build

Note: To install DDS Recorder remote controller application, compilation flag
-DBUILD_DDSRECORDER_CONTROLLER=ON is required.

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

3.17.3 CMake installation

This section explains how to compile eProsima DDS Record & Replay with CMake, either locally or globally.

Local installation

1. Create a DDS-Record-Replay directory where to download and build DDS Record & Replay and its dependen-
cies:

mkdir -p ~/DDS-Record-Replay/src
mkdir -p ~/DDS-Record-Replay/build
cd ~/DDS-Record-Replay
wget https://raw.githubusercontent.com/eProsima/DDS-Record-Replay/v0.4.0/
→˓ddsrecordreplay.repos
vcs import src < ddsrecordreplay.repos

2. Compile all dependencies using CMake.

• Foonathan memory

cd ~/DDS-Record-Replay
mkdir build/foonathan_memory_vendor
cd build/foonathan_memory_vendor
cmake ~/DDS-Record-Replay/src/foonathan_memory_vendor -DCMAKE_INSTALL_
→˓PREFIX=~/DDS-Record-Replay/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

• Fast CDR

cd ~/DDS-Record-Replay
mkdir build/fastcdr
cd build/fastcdr
cmake ~/DDS-Record-Replay/src/fastcdr -DCMAKE_INSTALL_PREFIX=~/DDS-
→˓Record-Replay/install
cmake --build . --target install

• Fast DDS

3.17. Linux installation from sources 67

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-DDS

DDS Record Replay Documentation, Release ..

cd ~/DDS-Record-Replay
mkdir build/fastdds
cd build/fastdds
cmake ~/DDS-Record-Replay/src/fastdds -DCMAKE_INSTALL_PREFIX=~/DDS-
→˓Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-Replay/install
cmake --build . --target install

• Dev Utils

CMake Utils
cd ~/DDS-Record-Replay
mkdir build/cmake_utils
cd build/cmake_utils
cmake ~/DDS-Record-Replay/src/dev-utils/cmake_utils -DCMAKE_INSTALL_
→˓PREFIX=~/DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-
→˓Replay/install
cmake --build . --target install

C++ Utils
cd ~/DDS-Record-Replay
mkdir build/cpp_utils
cd build/cpp_utils
cmake ~/DDS-Record-Replay/src/dev-utils/cpp_utils -DCMAKE_INSTALL_
→˓PREFIX=~/DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-
→˓Replay/install
cmake --build . --target install

• DDS Pipe

ddspipe_core
cd ~/DDS-Record-Replay
mkdir build/ddspipe_core
cd build/ddspipe_core
cmake ~/DDS-Record-Replay/src/ddspipe/ddspipe_core -DCMAKE_INSTALL_
→˓PREFIX=~/DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-
→˓Replay/install
cmake --build . --target install

ddspipe_participants
cd ~/DDS-Record-Replay
mkdir build/ddspipe_participants
cd build/ddspipe_participants
cmake ~/DDS-Record-Replay/src/ddspipe/ddspipe_participants -DCMAKE_
→˓INSTALL_PREFIX=~/DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-
→˓Record-Replay/install
cmake --build . --target install

ddspipe_yaml
cd ~/DDS-Record-Replay
mkdir build/ddspipe_yaml
cd build/ddspipe_yaml
cmake ~/DDS-Record-Replay/src/ddspipe/ddspipe_yaml -DCMAKE_INSTALL_
→˓PREFIX=~/DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-
→˓Replay/install (continues on next page)

68 Chapter 3. Structure of the documentation

https://github.com/eProsima/dev-utils
https://github.com/eProsima/DDS-Pipe

DDS Record Replay Documentation, Release ..

(continued from previous page)

cmake --build . --target install

3. Once all dependencies are installed, install eProsima DDS Record & Replay:

ddsrecorder_participants
cd ~/DDS-Record-Replay
mkdir build/ddsrecorder_participants
cd build/ddsrecorder_participants
cmake ~/DDS-Record-Replay/src/ddsrecorder/ddsrecorder_participants -DCMAKE_INSTALL_
→˓PREFIX=~/DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-Replay/install
cmake --build . --target install

ddsrecorder_yaml
cd ~/DDS-Record-Replay
mkdir build/ddsrecorder_yaml
cd build/ddsrecorder_yaml
cmake ~/DDS-Record-Replay/src/ddsrecorder/ddsrecorder_yaml -DCMAKE_INSTALL_PREFIX=~/
→˓DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-Replay/install
cmake --build . --target install

ddsrecorder
cd ~/DDS-Record-Replay
mkdir build/ddsrecorder_tool
cd build/ddsrecorder_tool
cmake ~/DDS-Record-Replay/src/ddsrecorder/ddsrecorder -DCMAKE_INSTALL_PREFIX=~/DDS-
→˓Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-Replay/install
cmake --build . --target install

ddsreplayer
cd ~/DDS-Record-Replay
mkdir build/ddsreplayer_tool
cd build/ddsreplayer_tool
cmake ~/DDS-Record-Replay/src/ddsrecorder/ddsreplayer -DCMAKE_INSTALL_PREFIX=~/DDS-
→˓Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-Replay/install
cmake --build . --target install

Note: By default, eProsima DDS Record & Replay does not compile tests. However, they can be activated by
downloading and installing Gtest and building with CMake option -DBUILD_TESTS=ON.

4. Optionally, install the remote controller application along with its dependency Fast DDS Python:

Fast DDS Python
cd ~/DDS-Record-Replay
mkdir build/fastdds_python
cd build/fastdds_python
cmake ~/DDS-Record-Replay/src/Fast-DDS-python/fastdds_python -DCMAKE_INSTALL_
→˓PREFIX=~/DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-Replay/install
cmake --build . --target install

Remote Controller Application
cd ~/DDS-Record-Replay

(continues on next page)

3.17. Linux installation from sources 69

https://github.com/google/googletest

DDS Record Replay Documentation, Release ..

(continued from previous page)

mkdir build/controller_tool
cd build/controller_tool
cmake ~/DDS-Record-Replay/src/ddsrecorder/controller/controller_tool -DCMAKE_
→˓INSTALL_PREFIX=~/DDS-Record-Replay/install -DCMAKE_PREFIX_PATH=~/DDS-Record-
→˓Replay/install -DBUILD_DDSRECORDER_CONTROLLER=ON
cmake --build . --target install

Global installation

To install eProsima DDS Record & Replay system-wide instead of locally, remove all the flags that appear in the
configuration steps of Fast-CDR, Fast-DDS, Dev-Utils, DDS-Pipe, and DDS-Record-Replay, and change the first
in the configuration step of foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

3.17.4 Run an application

To run the DDS Recorder tool, source the installation path and execute the executable file that has been installed in
<install-path>/ddsrecorder_tool/bin/ddsrecorder:

If built has been done using colcon, all projects could be sourced as follows
source install/setup.bash
./<install-path>/ddsrecorder_tool/bin/ddsrecorder

Likewise, to run the DDS Replay tool, source the installation path and execute the executable file that has been installed
in <install-path>/ddsreplayer_tool/bin/ddsreplayer:

If built has been done using colcon, all projects could be sourced as follows
source install/setup.bash
./<install-path>/ddsreplayer_tool/bin/ddsreplayer

Be sure that these executables have execution permissions.

3.18 Windows installation from sources

The instructions for installing the eProsima DDS Record & Replay application from sources and its required depen-
dencies are provided in this page. It is organized as follows:

• Dependencies installation

– Requirements

– Dependencies

• Colcon installation (recommended)

• CMake installation

– Local installation

– Global installation

70 Chapter 3. Structure of the documentation

DDS Record Replay Documentation, Release ..

• Run an application

3.18.1 Dependencies installation

eProsima DDS Record & Replay depends on eProsima Fast DDS library and certain Debian packages. This section
describes the instructions for installing eProsima DDS Record & Replay dependencies and requirements in a Windows
environment from sources. The following packages will be installed:

• foonathan_memory_vendor, an STL compatible C++ memory allocation library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

• cmake_utils, an eProsima utils library for CMake.

• cpp_utils, an eProsima utils library for C++.

• ddspipe, an eProsima internal library that enables the communication of DDS interfaces.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

Requirements

The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be
installed in the system:

• Visual Studio

• Chocolatey

• CMake, pip3, wget and git

• Colcon [optional]

• Fast DDS Python [for remote controller only]

• Gtest [for test only]

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features and in the Workloads tab enable Desktop development with C++. Finally,
click Modify at the bottom right.

3.18. Windows installation from sources 71

https://visualstudio.microsoft.com/

DDS Record Replay Documentation, Release ..

Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies. Down-
load and install it directly from the website.

CMake, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake, pip3, wget and git by following the instructions detailed in the respective websites. Once
installed, add the path to the executables to the PATH from the Edit the system environment variables control panel.

Colcon

colcon is a command line tool based on CMake aimed at building sets of software packages. Install the ROS 2 devel-
opment tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

Fast DDS Python

eProsima Fast DDS Python is a Python binding for the eProsima Fast DDS C++ library. It is only required for the
remote controller application.

Clone the Github repository into the eProsima DDS Record & Replay workspace and compile it with colcon as a
dependency package. Use the following command to download the code:

git clone https://github.com/eProsima/Fast-DDS-python.git src/Fast-DDS-python

Gtest

Gtest is a unit testing library for C++. By default, eProsima DDS Record & Replay does not compile tests. It is possible
to activate them with the opportune CMake options when calling colcon or CMake. For more details, please refer to
the CMake options section.

Run the following commands on your workspace to install Gtest.

git clone https://github.com/google/googletest.git
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\gtest' -Dgtest_force_shared_crt=ON -
→˓DBUILD_GMOCK=ON ^

-B build\gtest -A x64 -T host=x64 googletest
cmake --build build\gtest --config Release --target install

or refer to the Gtest Installation Guide for a detailed description of the Gtest installation process.

72 Chapter 3. Structure of the documentation

https://chocolatey.org/
https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/
https://github.com/eProsima/Fast-DDS-python/
https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest

DDS Record Replay Documentation, Release ..

Dependencies

eProsima DDS Record & Replay has the following dependencies, when installed from sources in a Windows environ-
ment:

• Asio and TinyXML2 libraries

• OpenSSL

• yaml-cpp

• SWIG [for remote controller only]

• PyQt6 [for remote controller only]

• MCAP dependencies

• eProsima dependencies

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. They can be downloaded directly from
the links below:

• Asio

• TinyXML2

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Down-
load and install the latest OpenSSL version for Windows at this link. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Record & Re-
play application to parse the provided configuration files. From an administrative shell with PowerShell, execute the
following commands in order to download and install yaml-cpp for Windows:

git clone --branch yaml-cpp-0.7.0 https://github.com/jbeder/yaml-cpp
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\yamlcpp' -B build\yamlcpp yaml-cpp
cmake --build build\yamlcpp --target install # If building in Debug mode, add --
→˓config Debug

3.18. Windows installation from sources 73

https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg
https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg
https://slproweb.com/products/Win32OpenSSL.html

DDS Record Replay Documentation, Release ..

MCAP dependencies

MCAP is a modular container format and logging library for pub/sub messages with arbitrary message serialization.
It is primarily intended for use in robotics applications, and works well under various workloads, resource constraints,
and durability requirements. MCAP C++ library is packed within DDS Record & Replay as a header-only, but its
dependencies need to be installed using the appropriate Windows package manager.

It is recommended to use vcpkg dependency manager to install LZ4 and zstd dependencies. Once both dependencies
are installed, add the directory where the binaries are located to the PATH. The installed binaries are usually located
under <path\to\vcpkg>/\installed\x64-windows\bin directory.

Note: To work with MCAP files via command line interface, you can use MCAP CLI <https://mcap.dev/guides/cli>
_ to manage the data in MCAP files.

SWIG

SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level pro-
gramming languages. It is leveraged by Fast DDS Python to generate a Python wrapper over Fast DDS library. SWIG
is only a requirement for the remote controller application. Download and install SWIG for Windows, choosing one
of the releases available at their website.

PyQt6

The eProsima DDS Record & Replay remote controller is a graphical user interface application implemented in Python
using PyQt6. To install PyQt6 simply run:

pip3 install PyQt6

eProsima dependencies

If it already exists in the system an installation of Fast DDS and DDS Pipe libraries, just source this libraries when
building the eProsima DDS Record & Replay application by using the command:

source <fastdds-installation-path>/install/setup.bash
source <ddspipe-installation-path>/install/setup.bash

In other case, just skip this step.

3.18.2 Colcon installation (recommended)

Important: Run colcon within a Visual Studio prompt. To do so, launch a Developer Command Prompt from the
search engine.

1. Create a DDS-Record-Replay directory and download the .repos file that will be used to install eProsima
DDS Record & Replay and its dependencies:

74 Chapter 3. Structure of the documentation

https://github.com/foxglove/mcap
https://vcpkg.io/en/
https://github.com/lz4/lz4
https://github.com/facebook/zstd
https://www.swig.org
https://www.swig.org/download.html
https://pypi.org/project/PyQt6/

DDS Record Replay Documentation, Release ..

mkdir <path\to\user\workspace>\DDS-Record-Replay
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir src
wget https://raw.githubusercontent.com/eProsima/DDS-Record-Replay/v0.4.0/
→˓ddsrecordreplay.repos ddsrecordreplay.repos
vcs import src < ddsrecordreplay.repos

Note: In case there is already a Fast DDS installation in the system it is not required to download and build
every dependency in the .repos file. It is just needed to download and build the eProsima DDS Record &
Replay project having sourced its dependencies. Refer to section eProsima dependencies in order to check how
to source Fast DDS library.

2. Build the packages:

colcon build

Note: To install DDS Recorder remote controller application, compilation flag
-DBUILD_DDSRECORDER_CONTROLLER=ON is required.

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

3.18.3 CMake installation

This section explains how to compile eProsima DDS Record & Replay with CMake, either locally or globally.

Local installation

1. Open a command prompt, and create a DDS-Record-Replay directory where to download and build eProsima
DDS Record & Replay and its dependencies:

mkdir <path\to\user\workspace>\DDS-Record-Replay
mkdir <path\to\user\workspace>\DDS-Record-Replay\src
mkdir <path\to\user\workspace>\DDS-Record-Replay\build
cd <path\to\user\workspace>\DDS-Record-Replay
wget https://raw.githubusercontent.com/eProsima/DDS-Record-Replay/v0.4.0/
→˓ddsrecordreplay.repos ddsrecordreplay.repos
vcs import src < ddsrecordreplay.repos

2. Compile all dependencies using CMake.

• Foonathan memory

cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\foonathan_memory_vendor
cd build\foonathan_memory_vendor
cmake <path\to\user\workspace>\DDS-Record-Replay\src\foonathan_memory_
→˓vendor -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-
→˓Replay\install ^

(continues on next page)

3.18. Windows installation from sources 75

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory

DDS Record Replay Documentation, Release ..

(continued from previous page)

-DBUILD_SHARED_LIBS=ON
cmake --build . --config Release --target install

• Fast CDR

cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\fastcdr
cd build\fastcdr
cmake <path\to\user\workspace>\DDS-Record-Replay\src\fastcdr -DCMAKE_
→˓INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\install
cmake --build . --config Release --target install

• Fast DDS

cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\fastdds
cd build\fastdds
cmake <path\to\user\workspace>\DDS-Record-Replay\src\fastdds -DCMAKE_
→˓INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\
→˓install
cmake --build . --config Release --target install

• Dev Utils

CMake Utils
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\cmake_utils
cd build\cmake_utils
cmake <path\to\user\workspace>\DDS-Record-Replay\src\dev-utils\cmake_
→˓utils -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-
→˓Replay\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\
→˓install
cmake --build . --config Release --target install

C++ Utils
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\cpp_utils
cd build\cpp_utils
cmake <path\to\user\workspace>\DDS-Record-Replay\src\dev-utils\cpp_utils␣
→˓-DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\
→˓install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\
→˓install
cmake --build . --config Release --target install

• DDS Pipe

ddspipe_core
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\ddspipe_core
cd build\ddspipe_core

(continues on next page)

76 Chapter 3. Structure of the documentation

https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/dev-utils
https://github.com/eProsima/DDS-Pipe

DDS Record Replay Documentation, Release ..

(continued from previous page)

cmake cd <path\to\user\workspace>\DDS-Record-Replay\src\ddspipe\ddspipe_
→˓core -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\
→˓install -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\
→˓install
cmake --build . --target install

ddspipe_yaml
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\ddspipe_yaml
cd build\ddspipe_yaml
cmake <path\to\user\workspace>\DDS-Record-Replay\src\ddspipe\ddspipe_
→˓yaml -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\
→˓install -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\
→˓install
cmake --build . --target install

ddspipe_participants
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\ddspipe_participants
cd build\ddspipe_participants
cmake <path\to\user\workspace>\DDS-Record-Replay\src\ddspipe\ddspipe_
→˓participants -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-
→˓Record-Replay\install -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-
→˓Record-Replay\install
cmake --build . --target install

3. Once all dependencies are installed, install eProsima DDS Record & Replay:

ddsrecorder_participants
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\ddsrecorder_participants
cd build\ddsrecorder_participants
cmake <path\to\user\workspace>\DDS-Record-Replay\src\ddsrecorder\ddsrecorder_
→˓participants ^

-DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\install -
→˓DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\install
cmake --build . --config Release --target install

ddsrecorder_yaml
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\ddsrecorder_yaml
cd build\ddsrecorder_yaml
cmake <path\to\user\workspace>\DDS-Record-Replay\src\ddsrecorder\ddsrecorder_yaml -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\install
cmake --build . --config Release --target install

ddsrecorder
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\ddsrecorder_tool
cd build\ddsrecorder_tool
cmake <path\to\user\workspace>\DDS-Record-Replay\src\ddsrecorder\ddsrecorder -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\install ^(continues on next page)

3.18. Windows installation from sources 77

DDS Record Replay Documentation, Release ..

(continued from previous page)

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\install
cmake --build . --config Release --target install

ddsreplayer
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\ddsreplayer_tool
cd build\ddsreplayer_tool
cmake <path\to\user\workspace>\DDS-Record-Replay\src\ddsrecorder\ddsreplayer -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\install
cmake --build . --config Release --target install

Note: By default, eProsima DDS Record & Replay does not compile tests. However, they can be activated by
downloading and installing Gtest and building with CMake option -DBUILD_TESTS=ON.

4. Optionally, install the remote controller application along with its dependency Fast DDS Python:

Fast DDS Python
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\fastdds_python
cd build\fastdds_python
cmake <path\to\user\workspace>\DDS-Record-Replay\src\Fast-DDS-python\fastdds_python␣
→˓-DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\install
cmake --build . --config Release --target install

Remote Controller Application
cd <path\to\user\workspace>\DDS-Record-Replay
mkdir build\controller_tool
cd build\controller_tool
cmake <path\to\user\workspace>\DDS-Record-Replay\src\controller\controller_tool -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record-Replay\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record-Replay\install -DBUILD_
→˓DDSRECORDER_CONTROLLER=ON
cmake --build . --config Release --target install

Global installation

To install eProsima DDS Record & Replay system-wide instead of locally, remove all the flags that appear in the
configuration steps of Fast-CDR, Fast-DDS, Dev-Utils, DDS-Pipe, and DDS-Record-Replay

78 Chapter 3. Structure of the documentation

https://github.com/google/googletest

DDS Record Replay Documentation, Release ..

3.18.4 Run an application

If eProsima DDS Record & Replay was compiled using colcon, when running an instance of DDS Recorder or DDS
Replayer, the colcon overlay built in the dedicated DDS-Record-Replay directory must be sourced. There are two
possibilities:

• Every time a new shell is opened, prepare the environment locally by typing the command:

setup.bat

• Add the sourcing of the colcon overlay permanently, by opening the Edit the system environment variables control
panel, and adding the installation path to the PATH.

However, when running a DDS Recorder or DDS Replayer compiled using CMake, it must be linked with its dependen-
cies where the packages have been installed. This can be done by opening the Edit system environment variables control
panel and adding to the PATH eProsima DDS Record & Replay installation directory: <path\to\user\workspace>\
DDS-Record-Replay\install.

3.19 CMake options

eProsima DDS Record & Replay provides numerous CMake options for changing the behavior and configuration of
eProsima DDS Record & Replay. These options allow the developer to enable/disable certain eProsima DDS Record
& Replay settings by defining these options to ON/OFF at the CMake execution, or set the required path to certain
dependencies.

Warning: These options are only for developers who installed eProsima DDS Record & Replay following the
compilation steps described in Linux installation from sources.

Option Description Possible
values

Default

CMAKE_BUILD_TYPE CMake optimization build type. Release
Debug

Release

BUILD_DDSRECORDER_CONTROLLERBuild the DDS Recorder remote controller application. OFF ON OFF
BUILD_DOCS Build the eProsima DDS Record & Replay documentation. OFF ON OFF
BUILD_TESTS Build the eProsima DDS Record & Replay tools and doc-

umentation tests.
OFF ON OFF

LOG_INFO Activate eProsima DDS Record & Replay logs. It is set to
ON if CMAKE_BUILD_TYPE is set to Debug.

OFF ON ON if Debug
OFF otherwise

ASAN_BUILD Activate address sanitizer build. OFF ON OFF
TSAN_BUILD Activate thread sanitizer build. OFF ON OFF

3.19. CMake options 79

DDS Record Replay Documentation, Release ..

3.20 Version v0.4.0

This release includes the following Recording features:

• Publish the Logs in a DDS topic.

• New Monitor module.

This release includes the following DDS Recorder tool configuration features:

• New configuration option logging to configure the Logs.

This release includes the following DDS Replayer tool configuration features:

• New configuration option logging to configure the Logs.

This release includes the following Dependencies Update:

Repository Old Version New Version
Foonathan Memory Vendor eProsima/foonathan_memory_vendor v1.3.1 v1.3.1
Fast CDR eProsima/Fast-CDR v2.1.2 v2.2.0
Fast DDS eProsima/Fast-DDS v2.13.1 v2.14.0
Dev Utils eProsima/dev-utils v0.5.0 v0.6.0
DDS Pipe eProsima/DDS-Pipe v0.3.0 v0.4.0

3.21 Previous Versions

3.21.1 Version v0.3.0

This release includes the following Recording features:

• New DDS Recorder suspended (active stopped) state (see remote controller for more details).

This release includes the following DDS Recorder & Replay internal adjustments:

• Store DDS Record & Replay version in metadata record of the generated MCAP files.

• Move dynamic types storage from metadata to attachments MCAP section.

• Set app_id and app_metadata attributes on DDS Record & Replay participants.

• Store schemas in OMG IDL and ROS 2 msg format.

Warning: Types recorded with previous versions of DDS Record & Replay are no longer “replayable” after this
update.

This release includes the following DDS Recorder tool configuration features:

• Support Compression Settings.

• Allow disabling the storage of received types (see Record Types).

• New configuration options (timestamp-format and local-timestamp) available for output file settings.

• New configuration option (topics) to configure the Manual Topics.

• Rename max-reception-rate to max-rx-rate.

• Record data in either ROS 2 format or the raw DDS format (see Topic Type Format).

80 Chapter 3. Structure of the documentation

https://github.com/eProsima/foonathan_memory_vendor
https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1
https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1
https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-CDR/releases/tag/v2.1.2
https://github.com/eProsima/Fast-CDR/releases/tag/v2.2.0
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS/releases/tag/v2.13.1
https://github.com/eProsima/Fast-DDS/releases/tag/v2.14.0
https://github.com/eProsima/dev-utils
https://github.com/eProsima/dev-utils/releases/tag/v0.5.0
https://github.com/eProsima/dev-utils/releases/tag/v0.6.0
https://github.com/eProsima/DDS-Pipe.git
https://github.com/eProsima/DDS-Pipe/releases/tag/v0.3.0
https://github.com/eProsima/DDS-Pipe/releases/tag/v0.4.0

DDS Record Replay Documentation, Release ..

This release includes the following DDS Replayer tool configuration features:

• New configuration option (topics) to configure the Manual Topics.

• New configuration option (max-tx-rate) to configure the Max transmission rate.

• Remove the support for Built-in Topics.

• Read data in either ROS 2 format or the raw DDS format.

This release includes the following Dependencies Update:

Repository Old Version New Version
Foonathan Memory Vendor eProsima/foonathan_memory_vendor v1.3.1 v1.3.1
Fast CDR eProsima/Fast-CDR v1.1.0 v2.1.3
Fast DDS eProsima/Fast-DDS v2.11.0 v2.13.1
Dev Utils eProsima/dev-utils v0.4.0 v0.5.0
DDS Pipe eProsima/DDS-Pipe v0.2.0 v0.3.0

3.21.2 Version v0.2.0

This release includes DDS Replay tool, supporting the following Replay features:

• Supports setting begin and end times (begin-time / end-time).

• Supports setting a replay start time (start-replay-time).

• Supports playing stored data at a specific playback rate (rate).

• Supports sending dynamic types stored in input MCAP file.

This release includes the following User Interface features:

• Replay Service Command-Line Parameters.

This release includes the following (DDS Replay tool) Configuration features:

• Support YAML configuration file.

• Support for allow and block topic filters at execution time and in run-time.

• Support configuration related to DDS communication.

• Support configuration of playback settings.

• Support configuration of the internal operation of the DDS Replayer.

• Support enabling/disabling dynamic types dispatch (see Only With Type).

• Support Interface Whitelisting.

• Support Custom Transport Descriptors (UDP or Shared Memory only).

• Support Ignore Participant Flags.

This release includes the following Recording features:

• Supports recording messages with unknown (dynamic) data type, and to only record data whose type is known
(see Only With Type).

This release includes the following (DDS Recorder tool) Configuration features:

• Support record only data whose (dynamic) type is known: only-with-type: true (see Only With Type).

• Support Interface Whitelisting.

3.21. Previous Versions 81

https://dds-recorder.readthedocs.io/en/v0.2.0/rst/replaying/usage/configuration.html#built-in-topics
https://github.com/eProsima/foonathan_memory_vendor
https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1
https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1
https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-CDR/releases/tag/v1.1.0
https://github.com/eProsima/Fast-CDR/releases/tag/v2.1.3
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS/releases/tag/v2.11.0
https://github.com/eProsima/Fast-DDS/releases/tag/v2.13.1
https://github.com/eProsima/dev-utils
https://github.com/eProsima/dev-utils/releases/tag/v0.4.0
https://github.com/eProsima/dev-utils/releases/tag/v0.5.0
https://github.com/eProsima/DDS-Pipe.git
https://github.com/eProsima/DDS-Pipe/releases/tag/v0.2.0
https://github.com/eProsima/DDS-Pipe/releases/tag/v0.3.0

DDS Record Replay Documentation, Release ..

• Support Custom Transport Descriptors (UDP or Shared Memory only).

• Support Ignore Participant Flags.

This release includes the following Documentation features:

• Updated documentation with Replay service configuration and usage instructions.

This release includes the following Dependencies Update:

Repository Old Version New Version
Foonathan Memory Vendor eProsima/foonathan_memory_vendor v1.3.0 v1.3.1
Fast CDR eProsima/Fast-CDR v1.0.27 v1.1.0
Fast DDS eProsima/Fast-DDS v2.10.1 v2.11.0
Dev Utils eProsima/dev-utils v0.3.0 v0.4.0
DDS Pipe eProsima/DDS-Pipe v0.1.0 v0.2.0

3.21.3 Version v0.1.0

This is the first release of eProsima DDS Record & Replay.

This release includes several features regarding the recording of DDS data, configuration and user interaction.

This release includes the following Recording features:

• Supports DynamicTypes.

• Supports saves the data in a MCAP database.

• Supports for downsampling that reduces the sampling rate of the received data.

• Supports for buffer-size that indicates the number of samples to be stored in the process memory before the
dump to disk.

This release includes the following User Interface features:

• Recording Service Command-Line Parameters.

• Remote Control.

This release includes the following Configuration features:

• Support YAML configuration file.

• Support for allow and block topic filters at execution time and in run-time.

• Support configuration related to DDS communication.

• Support configuration of data writing in the database.

• Support configuration of the remote controller of the DDS Recorder.

• Support configuration of the internal operation of the DDS Recorder.

This release includes the following Tutorials:

• Configuring Fast DDS DynamicTypes for data recording.

• Visualize recorded data with Foxglove.

This release includes the following Documentation features:

• This same documentation.

82 Chapter 3. Structure of the documentation

https://github.com/eProsima/foonathan_memory_vendor
https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.0
https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1
https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-CDR/releases/tag/v1.0.27
https://github.com/eProsima/Fast-CDR/releases/tag/v1.1.0
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS/releases/tag/v2.10.1
https://github.com/eProsima/Fast-DDS/releases/tag/v2.11.0
https://github.com/eProsima/dev-utils
https://github.com/eProsima/dev-utils/releases/tag/v0.3.0
https://github.com/eProsima/dev-utils/releases/tag/v0.4.0
https://github.com/eProsima/DDS-Pipe.git
https://github.com/eProsima/DDS-Pipe/releases/tag/v0.1.0
https://github.com/eProsima/DDS-Pipe/releases/tag/v0.2.0

DDS Record Replay Documentation, Release ..

3.22 Glossary

3.22.1 Networking nomenclature

LAN Local Area Network

3.22.2 DDS Record & Replay nomenclature

MCAP Modular container file format for heterogeneous timestamped data.

3.22.3 DDS nomenclature

DataReader DDS element that subscribes to a specific Topic. It belong to one and only one Participant, and it is
uniquely identified by a Guid.

See Fast DDS documentation for further information.

DataWriter DDS entity that publish data in a specific Topic. It belong to one and only one Participant, and it is
uniquely identified by a Guid.

See Fast DDS documentation for further information.

Domain Id The Domain Id is a virtual partition for DDS networks. Only DomainParticipants with the same Domain
Id would be able to communicate to each other. DomainParticipants in different Domains will not even discover
each other.

See Fast DDS documentation for further information.

DomainParticipant A DomainParticipant is the entry point of the application to a DDS Domain. Every DomainPar-
ticipant is linked to a single domain from its creation, and cannot change such domain. It also acts as a factory
for Publisher, Subscriber and Topic.

See Fast DDS documentation for further information.

Endpoint DDS element that publish or subscribes in a specific Topic. Endpoint kinds are DataWriter or DataReader.

Guid Global Unique Identifier. It contains a GuidPrefix and an EntityId. The EntityId uniquely identifies sub-entities
inside a Participant. Identifies uniquely a DDS entity (DomainParticipant, DataWriter or DataReader).

GuidPrefix Global Unique Identifier shared by a Participant and all its sub-entities. Identifies uniquely a DDS Partic-
ipant.

Topic DDS isolation abstraction to encapsulate subscriptions and publications. Each Topic is uniquely identified by a
topic name and a topic type name (name of the data type it transmits).

See Fast DDS documentation for further information.

DynamicTypes The dynamic topic types offer the possibility to work over DDS without the restrictions related to the
IDLs. Using them, the users can declare the different types that they need and manage the information directly,
avoiding the additional step of updating the IDL file and the generation of C++ classes.

See Fast DDS documentation for further information.

3.22. Glossary 83

https://fast-dds.docs.eprosima.com/en/v2.10.1/fastdds/dds_layer/subscriber/dataReader/dataReader.html
https://fast-dds.docs.eprosima.com/en/v2.10.1/fastdds/dds_layer/publisher/dataWriter/dataWriter.html
https://fast-dds.docs.eprosima.com/en/v2.10.1//fastdds/dds_layer/domain/domain.html
https://fast-dds.docs.eprosima.com/en/v2.10.1/fastdds/dds_layer/domain/domainParticipant/domainParticipant.html
https://fast-dds.docs.eprosima.com/en/v2.10.1/fastdds/dds_layer/topic/topic.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html

DDS Record Replay Documentation, Release ..

84 Chapter 3. Structure of the documentation

INDEX

D
DataReader, 83
DataWriter, 83
Domain Id, 83
DomainParticipant, 83
DynamicTypes, 83

E
Endpoint, 83

G
Guid, 83
GuidPrefix, 83

L
LAN, 83

M
MCAP, 83

T
Topic, 83

85

	Contacts and Commercial support
	Contributing to the documentation
	Structure of the documentation
	Overview
	Contacts and Commercial support
	Contributing to the documentation
	Structure of the documentation
	DDS Record & Replay on Windows
	DDS Record & Replay on Linux
	Docker Image (recommended)
	Getting Started
	Project Overview
	Usage Description
	Common Use cases

	Example of usage
	Prerequisites
	Start ShapesDemo
	Recorder configuration
	Recorder execution
	Next Steps

	Usage
	Starting Recording Application
	Docker Image
	Installation from sources

	Closing Recording Application
	SIGINT
	SIGTERM
	TIMEOUT

	Recording Service Command-Line Parameters

	Configuration
	DDS Recorder Configuration
	DDS Configuration
	DDS Domain
	Built-in Topics
	Topic Filtering
	Topic QoS
	History Depth
	Max Reception Rate
	Downsampling

	Manual Topics
	Ignore Participant Flags
	Custom Transport Descriptors
	Interface Whitelist

	Recorder Configuration
	Output File
	Buffer size
	Event Window
	Log Publish Time
	Only With Type
	Compression
	Record Types
	Topic type format

	Remote Controller
	Specs Configuration
	Number of Threads
	Maximum Number of Pending Samples
	Cleanup Period
	QoS
	Logging
	Monitor

	General Example

	Fast DDS Configuration

	Remote Control
	DDS Recorder Statuses
	DDS Controller Data Types
	DDS Recorder remote controller application

	Getting Started
	Project Overview
	Usage Description
	Common Use cases

	Example of usage
	Prerequisites
	Start ShapesDemo
	Replayer configuration
	Replayer execution
	Next Steps

	Usage
	Starting Replay Application
	Docker Image
	Installation from sources

	Closing Replay Application
	SIGINT
	SIGTERM
	TIMEOUT

	Replay Service Command-Line Parameters

	Configuration
	DDS Replayer Configuration
	DDS Configuration
	DDS Domain
	Topic Filtering
	Topic QoS
	History Depth
	Max Transmission Rate

	Manual Topics
	Ignore Participant Flags
	Custom Transport Descriptors
	Interface Whitelist

	Replay Configuration
	Input File
	Begin Time
	End Time
	Start Replay Time
	Playback Rate
	Replay Types

	Specs Configuration
	Number of Threads
	Wait-for-acknowledgement Timeout
	QoS
	Logging

	General Example

	Configuring Fast DDS DynamicTypes
	Background
	Prerequisites
	Generating data types
	DDS Publisher
	Data types
	Examining the code

	DDS Subscriber
	Examining the code

	Running the application

	Visualize data with Foxglove
	Background
	Prerequisites
	Configuring DDS Recorder
	Running the application
	Start ShapesDemo
	Recorder execution
	Visualize data with Foxglove Studio

	Linux installation from sources
	Dependencies installation
	Requirements
	CMake, g++, pip, wget and git
	Colcon
	Fast DDS Python
	Gtest

	Dependencies
	Asio and TinyXML2 libraries
	OpenSSL
	yaml-cpp
	SWIG
	PyQt6
	MCAP dependencies
	eProsima dependencies

	Colcon installation (recommended)
	CMake installation
	Local installation
	Global installation

	Run an application

	Windows installation from sources
	Dependencies installation
	Requirements
	Visual Studio
	Chocolatey
	CMake, pip3, wget and git
	Colcon
	Fast DDS Python
	Gtest

	Dependencies
	Asio and TinyXML2 libraries
	OpenSSL
	yaml-cpp
	MCAP dependencies
	SWIG
	PyQt6
	eProsima dependencies

	Colcon installation (recommended)
	CMake installation
	Local installation
	Global installation

	Run an application

	CMake options
	Version v0.4.0
	Previous Versions
	Version v0.3.0
	Version v0.2.0
	Version v0.1.0

	Glossary
	Networking nomenclature
	DDS Record & Replay nomenclature
	DDS nomenclature

	Index

