

 eProsima DDS Record Documentation

[image: eProsima]
 [http://www.eprosima.com/]eProsima DDS Record is an end-user software application that efficiently saves DDS data published into a DDS environment in a MCAP format database.
Thus, the exact playback of the recorded network events is possible as the data is linked to the timestamp at which the original data was published.
At the moment, it is only possible to replay the data using external tools capable of interpreting the MCAP format, as the eProsima DDS Record does not provide a replay tool.

eProsima DDS Record is easily configurable and installed with a default setup, so that DDS topics, data types and entities are automatically discovered without the need to specify the types of data recorded.
This is because the recording tool exploits the DynamicTypes functionality of eProsima Fast DDS [https://fast-dds.docs.eprosima.com], the C++ implementation of the DDS (Data Distribution Service) Specification [https://www.omg.org/spec/DDS/About-DDS/] defined by the Object Management Group (OMG) [https://www.omg.org/].

Overview

eProsima DDS Record includes the following tools:

	DDS Recorder tool.
The main functionality of this tool is to save the data in a MCAP [https://mcap.dev/] database.
The database contains the records of the publication timestamp of the data, the serialized data, and the definition of the data serialization type and format.
The output MCAP file can be read with any user tool compatible with MCAP file reading since it contains all the necessary information for reading and reproducing the data.

[image: _images/ddsrecord_overview.png]

	DDS Remote Controller tool.
This application allows remote control of the recording tool.
Thus, a user can have the recording tool on a device and from another device send commands to start, stop or pause data recording.

[image: _images/controller_interact.png]

Contacts and Commercial support

Find more about us at eProsima’s webpage [https://eprosima.com/].

Support available at:

	Email: support@eprosima.com

	Phone: +34 91 804 34 48

Contributing to the documentation

DDS Recorder Documentation is an open source project, and as such all contributions, both in the form of
feedback and content generation, are most welcomed.
To make such contributions, please refer to the
Contribution Guidelines [https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md] hosted in our GitHub
repository.

Structure of the documentation

This documentation is organized into the sections below.

	Installation Manual

	Recording application

	Developer Manual

	Release Notes

 eProsima DDS Record Documentation

[image: eProsima]
 [http://www.eprosima.com/]eProsima DDS Record is an end-user software application that efficiently saves DDS data published into a DDS environment in a MCAP format database.
Thus, the exact playback of the recorded network events is possible as the data is linked to the timestamp at which the original data was published.
At the moment, it is only possible to replay the data using external tools capable of interpreting the MCAP format, as the eProsima DDS Record does not provide a replay tool.

eProsima DDS Record is easily configurable and installed with a default setup, so that DDS topics, data types and entities are automatically discovered without the need to specify the types of data recorded.
This is because the recording tool exploits the DynamicTypes functionality of eProsima Fast DDS [https://fast-dds.docs.eprosima.com], the C++ implementation of the DDS (Data Distribution Service) Specification [https://www.omg.org/spec/DDS/About-DDS/] defined by the Object Management Group (OMG) [https://www.omg.org/].

Overview

eProsima DDS Record includes the following tools:

	DDS Recorder tool.
The main functionality of this tool is to save the data in a MCAP [https://mcap.dev/] database.
The database contains the records of the publication timestamp of the data, the serialized data, and the definition of the data serialization type and format.
The output MCAP file can be read with any user tool compatible with MCAP file reading since it contains all the necessary information for reading and reproducing the data.

[image: ../../_images/ddsrecord_overview.png]

	DDS Remote Controller tool.
This application allows remote control of the recording tool.
Thus, a user can have the recording tool on a device and from another device send commands to start, stop or pause data recording.

[image: ../../_images/controller_interact.png]

Contacts and Commercial support

Find more about us at eProsima’s webpage [https://eprosima.com/].

Support available at:

	Email: support@eprosima.com

	Phone: +34 91 804 34 48

Contributing to the documentation

DDS Recorder Documentation is an open source project, and as such all contributions, both in the form of
feedback and content generation, are most welcomed.
To make such contributions, please refer to the
Contribution Guidelines [https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md] hosted in our GitHub
repository.

Structure of the documentation

This documentation is organized into the sections below.

	Installation Manual

	Recording application

	Developer Manual

	Release Notes

1. DDS Recorder on Windows

Warning

The current version of DDS Recorder does not have installers for Windows platforms.
Please refer to the Windows installation from sources section to learn how to build DDS Recorder
on Windows from sources.

2. DDS Recorder on Linux

Warning

The current version of DDS Recorder does not have installers for Linux platforms.
Please refer to the Linux installation from sources section to learn how to build DDS Recorder
on Linux from sources.

3. Docker Image (recommended)

Warning

Docker image of DDS Recorder will be updated soon in eProsima Downloads website [https://www.eprosima.com/index.php/downloads-all].

eProsima distributes a Docker image of DDS Recorder with Ubuntu 22.04 as base image.
This image launches an instance of DDS Recorder that is configured using a YAML configuration file provided by the user
and shared with the Docker container.
The steps to run DDS Recorder in a Docker container are explained below.

	Download the compressed Docker image in .tar format from the
eProsima Downloads website [https://www.eprosima.com/index.php/downloads-all].
It is strongly recommended to download the image corresponding to the latest version of DDS Recorder.

	Extract the image by executing the following command:

load ubuntu-ddsrecorder:<version>.tar

where version is the downloaded version of DDS Recorder.

	Build a DDS Recorder configuration YAML file on the local machine.
This will be the DDS Recorder configuration file that runs inside the Docker container.
To continue this installation manual, let’s use one of the configuration files provided in the
Tutorials section.
Open your preferred text editor and copy a full example from the Tutorials section
into the /<dds_recorder_ws>/DDS_RECORDER_CONFIGURATION.yaml file, where dds_recorder_ws is the path of the
configuration file.
To make this accessible from the Docker container we will create a shared volume containing just
this file. This is explained in next point.

	Run the Docker container executing the following command:

docker run -it \
 --net=host \
 --ipc=host \
 --privileged \
 -v /<dds_recorder_ws>/DDS_RECORDER_CONFIGURATION.yaml:/root/DDS_RECORDER_CONFIGURATION.yaml \
 ubuntu-ddsrecorder:v0.3.0

It is important to mention that both the path to the configuration file hosted in the local machine and the one
created in the Docker container must be absolute paths in order to share just one single file as a shared volume.

After executing the previous command you should be able to see the initialization traces from the DDS Recorder
running in the Docker container.
If you want to terminate the application gracefully, just press Ctrl+C to stop the execution of DDS Recorder.

1. Getting Started

	1.1. Project Overview

	1.2. Example of usage

1.1. Project Overview

eProsima DDS Record is a cross-platform application developed by eProsima and powered by Fast DDS that contains a set of tools for debugging DDS networks.
Among these tools is a recording application, called DDS Recorder, which allows a user to capture data published in a DDS environment for later analysis.

The DDS Recorder application automatically discovers all topics in the DDS network and saves the data published in each topic with the publication timestamp of the data.
Furthermore, by using the DynamicTypes [https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html] feature of Fast DDS, it is possible to record the type of the data in the MCAP file.
The benefit of this comes from the fact that the data is saved serialized according to the CDR format.
The registration of the data type in the file allows the reading of the data (deserialization) when loading the file.

Since the DDS Recorder needs to record the data types of the data to be saved in the database, the user application must communicate the data types with which it is working by means of the type lookup service.
This can be easily achieved by applying the configuration described in this section.

Moreover, DDS Recorder is designed to ensure that internal communications are handled efficiently, from the reception of the data to its storage in the output database.
This is achieved through the internal implementation of a zero-copy communication mechanism implemented in one of the DDS Recorder base libraries.
It is also possible to configure the number of threads that execute these data reception and saving tasks, as well as the size of the internal buffers to avoid writing to disk with each received data.

1.1.1. Usage Description

DDS Recorder is a terminal (non-graphical) application that creates a recording service as long as it is running.
Although most use cases are covered by the default configuration, the DDS Recorder can be configured via a YAML file,
whose format is very intuitive and human-readable.

	Run:
Only the command that launches the application (ddsrecorder) needs to be executed to run a DDS Recorder.
Please, read this section to apply a specific configuration, and this section to see the supported arguments.

	Interact:
Once the DDS Recorder application is running, the allowlist and blocklist topic lists could be changed in runtime by just changing the YAML configuration file.
It is also possible to change the status of the recorder (RUNNING, PAUSED, STOPPED or CLOSED) by remote control of the application.
This remote control is done by sending commands via DDS or by using the graphical remote control application provided with the eProsima DDS Record software tool (see Remote control).

	Close:
To close the DDS Recorder application just send a Ctrl+C signal to terminate the process gracefully (see Closing Recording Application) or close it remotely using the remote control application (see Remote control).

1.1.2. Common Use cases

To get started with DDS Recorder, please visit section Example of usage.
In addition, this documentation provides several tutorials on how to set up a DDS Recorder, a comprehensive Fast DDS application using DynamicTypes and how to read the generated MCAP file.

1.2. Example of usage

This example will serve as a hands-on tutorial, aimed at introducing some of the key concepts and features that
eProsima DDS Record recording application (DDS Recorder or ddsrecorder) has to offer.

1.2.1. Prerequisites

It is required to have eProsima DDS Record previously installed using one of the following installation methods:

	DDS Recorder on Windows

	DDS Recorder on Linux

	Docker Image (recommended)

Additionally, ShapesDemo [https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo] is required to publish and subscribe shapes of different colors and sizes.
ShapesDemo application is already prepared to use Fast DDS DynamicTypes, which is required when using the DDS Recorder.
Install it by following any of the methods described in the given links:

	Windows installation from binaries [https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/windows_binaries.html]

	Linux installation from sources [https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/linux_sources.html]

	Docker Image [https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/docker_image.html]

1.2.2. Start ShapesDemo

Let us launch a ShapesDemo instance and start publishing in topics Square with default settings.

[image: ../../../_images/shapesdemo_publisher.png]

1.2.3. Recorder configuration

DDS Recorder runs with default configuration settings.
This default configuration records all messages of all DDS Topics found in DDS Domain 0 in the output_YYYY-MM-DD-DD_hh-mm-ss.mcap file.

Additionally, it is possible to change the default configuration parameters by means of a YAML configuration file.

Note

Please refer to Configuration for more information on how to configure a DDS Recorder.

1.2.4. Recorder execution

Launching a DDS Recorder instance is as easy as executing the following command:

ddsrecorder

In order to know all the possible arguments supported by this tool, use the command:

ddsrecorder --help

[image: ../../../_images/shapesdemo_exec.png]

Stop the recorder with Ctrl+C and check that the MCAP file exists.

1.2.5. Next Steps

Explore section Tutorials for more information on how to configure and set up a recorder, as well as to discover multiple scenarios where DDS Recorder may serve as a useful tool.

2. Usage

eProsima DDS Record is a user application executed from command line.

	Starting Recording Application

	Closing Recording Application

	Recording Service Command-Line Parameters

2.1. Starting Recording Application

2.1.1. Docker Image

The recommended method to run the DDS Recorder is to instantiate a Docker container of the DDS Recorder image.
Here are the instructions to download the compressed DDS Recorder Docker image and load it locally.

To run the DDS Recorder from a Docker container execute the following command:

docker run -it \
 --net=host \
 --ipc=host \
 -v /<dds_recorder_ws>/DDS_RECORDER_CONFIGURATION.yaml:/root/DDS_RECORDER_CONFIGURATION.yaml \
 ubuntu-ddsrecorder:v<X.X.X> ddsrecorder

2.1.2. Installation from sources

eProsima DDS Record depends on fastrtps, fastcdr and ddspipe libraries.
In order to correctly execute the recorder, make sure that fastrtps, fastcdr and ddspipe are properly sourced.

source <path-to-fastdds-installation>/install/setup.bash
source <path-to-ddspipe-installation>/install/setup.bash
source <path-to-ddsrecorder-installation>/install/setup.bash

Note

If Fast DDS, DDS Router and DDS Recorder have been installed in the system, these libraries would be sourced by default.

To start eProsima DDS Record with a default configuration, enter:

ddsrecorder

2.2. Closing Recording Application

2.2.1. SIGINT

To close eProsima DDS Record, press Ctrl+C. eProsima DDS Record will perform a clean shutdown.

2.2.2. SIGTERM

Write command kill <pid> in a different terminal, where <pid> is the id of the process running the DDS Recorder.
Use ps or top programs to check the process ids.

2.2.3. TIMEOUT

Setting a maximum amount of seconds that the application will work using argument --timeout will close the application once the time has expired.

2.3. Recording Service Command-Line Parameters

The DDS Recorder application supports several input arguments:

	Command

	Description

	Option

	Possible Values

	Default Value

	Help

	It shows the usage information

of the application.

	-h

--help

	
	

	Version

	It shows the current version

of the DDS Recorder and the

hash of the last commit of

the compiled code.

	-v

--version

	
	

	Configuration File

	Configuration file path.

	-c

--config-path

	
	./DDS_RECORDER_CONFIGURATION.yaml

	Reload Timer

	The configuration file will be

automatically reloaded

according to the specified

time period.

	-r

--reload-time

	Unsigned Integer

	0

	Timeout

	Set a maximum time while the

application will be running.

0` means that the application

will run forever (until kill

via signal).

	-t

--timeout

	Unsigned Integer

	0

	Debug

	Enables the DDS Recorder

logs so the execution can be

followed by internal

debugging information.

Sets Log Verbosity

to info and

Log Filter

to DDSRECORDER.

	-d

--debug

	
	

	Log Verbosity

	Set the verbosity level so

only log messages with equal

or higher importance level

are shown.

	--log-verbosity

	info

warning

error

	warning

	Log Filter

	Set a regex string as filter.

	--log-filter

	String

	"DDSRecorder"

3. Configuration

	DDS Recorder Configuration

	DDS Configuration

	Recorder Configuration

	Remote Controller

	Specs Configuration

	General Example

	Fast DDS Configuration

3.1. DDS Recorder Configuration

A DDS Recorder is configured by a .yaml configuration file.
This .yaml file contains all the information regarding the DDS interface configuration, recording parameters, and DDS Recorder specifications.
Thus, this file has four major configuration groups:

	dds: configuration related to DDS communication.

	recorder: configuration of data writing in the database.

	remote-controller: configuration of the remote controller of the DDS Recorder.

	specs: configuration of the internal operation of the DDS Recorder.

3.1.1. DDS Configuration

Configuration related to DDS communication.

3.1.1.1. Topic Filtering

DDS Recorder includes a mechanism to automatically detect which topics are being used in a DDS network.
By automatically detecting these topics, a DDS Recorder creates internal DDS Readers for each topic in order to record the data published on each discovered topic.

Note

DDS Recorder entities are created with the QoS of the first Subscriber found in this Topic.

DDS Recorder allows filtering of DDS Topics, that is, it allows to define the DDS Topics’ data that is going to be recorder by the application.
This way, it is possible to define a set of rules in DDS Recorder to filter those data samples the user does not wish to save.

It is not mandatory to define such set of rules in the configuration file.
In this case, a DDS Recorder will save all the data published under the topics that it automatically discovers within the DDS network to which it connects.

To define these data filtering rules based on the Topics to which they belong, the following lists are available:

	Allowed topics list (allowlist)

	Block topics list (blocklist)

These lists of topics stated above are defined by a tag in the YAML configuration file, which defines a YAML vector ([]).
This vector contains the list of topics for each filtering rule.
Each Topic is determined by its entries name and type, with only the first one being mandatory.

	Topic entries

	Data type

	Default value

	name

	string

	-

	type

	string

	"*"

See Topic section for further information about the topic.

Note

Placing quotation marks around values in a YAML file is generally optional.
However, values containing wildcard characters must be enclosed by single or double quotation marks.

3.1.1.1.1. Allow topic list

This is the list of topics that DDS Recorder will record, i.e. the data published under the topics matching the expressions in the allowlist will be saved by DDS Recorder.

Note

If no allowlist is provided, data will be recorded for all topics (unless filtered out in blocklist).

3.1.1.1.2. Block topic list

This is the list of topics that the DDS Recorder will block, that is, all data published under the topics matching the filters specified in the blocklist will be discarded by the DDS Recorder and therefore will not be recorded.

This list takes precedence over the allowlist.
If a topic matches an expression both in the allowlist and in the blocklist, the blocklist takes precedence, causing the data under this topic to be discarded.

Example of usage - Allowlist and blocklist collision:

In the following example, the HelloWorldTopic topic is both in the allowlist and (implicitly) in the
blocklist, so according to the blocklist preference rule this topic is blocked.
Moreover, only the topics present in the allowlist are relayed, regardless of whether more topics are dynamically
discovered in the DDS network.
In this case the forwarded topics are AllowedTopic1 with data type Allowed
and AllowedTopic2 regardless of its data type.

allowlist:
 - name: AllowedTopic1
 type: Allowed
 - name: AllowedTopic2
 type: "*"
 - name: HelloWorldTopic
 type: HelloWorld

blocklist:
 - name: "*"
 type: HelloWorld

3.1.1.2. Built-in Topics

Apart from the dynamic DDS topics discovered in the network, the discovery phase can be accelerated by using the builtin topic list (builtin-topics).
By defining topics in this list, the DDS Recorder will create the DataWriters and DataReaders in recorder initialization.

The builtin-topics list is defined in the same form as the allowlist and blocklist.

This feature also allows to manually force the QoS of a specific topic, so the entities created in such topic follows the specified QoS and not the one first discovered.

3.1.1.2.1. Topic Quality of Service

For every topic contained in this list, both name and type must be specified and contain no wildcard characters.
Apart from these values, the tag qos under each topic allows to configure the following values:

	Quality of Service

	Yaml tag

	Data type

	Default value

	QoS set

	Reliability

	reliability

	bool

	false

	RELIABLE / BEST_EFFORT

	Durability

	durability

	bool

	false

	TRANSIENT_LOCAL / VOLATILE

	History Depth

	depth

	integer

	default value

	
	

	Partitions

	partitions

	bool

	false

	Topic with / without partitions

	Ownership

	ownership

	bool

	false

	EXCLUSIVE_OWNERSHIP_QOS / SHARED_OWNERSHIP_QOS

	Key

	keyed

	bool

	false

	Topic with / without key

	Downsampling

	downsampling

	integer

	default value

	Downsampling factor

	Max Reception Rate

	max-reception-rate

	float

	default value

	Maximum sample reception rate [Hz]

Example of usage:

builtin-topics:
 - name: HelloWorldTopic
 type: HelloWorld
 qos:
 reliability: true # Use QoS RELIABLE
 durability: true # Use QoS TRANSIENT_LOCAL
 depth: 100 # Use History Depth 100
 partitions: true # Topic with partitions
 ownership: false # Use QoS SHARED_OWNERSHIP_QOS
 keyed: true # Topic with key
 downsampling: 4 # Keep 1 of every 4 samples
 max-reception-rate: 10 # Discard messages if less than 100ms elapsed since the last sample was processed

3.1.1.3. DDS Domain

Tag domain configures the Domain Id.

domain: 101

3.1.2. Recorder Configuration

Configuration of data writing in the database.

3.1.2.1. Output File

The recorder output file does support the following configurations:

	Parameter

	Tag

	Description

	Data type

	Default value

	File path

	path

	Configure the path to save the output file.

	string

	.

	File name

	filename

	Configure the name of the output file.

	string

	output

When DDS Recorder application is launched (or when remotely controlled, every time a start command is received), a temporary file with filename name and .mcap.tmp~ extension is created in path.
This file is not readable until the application is terminated (or a stop / close command is received).
On such event, the temporal file is renamed to filename with .mcap extension in the same location, and is then ready to be processed.

3.1.2.2. Buffer size

buffer-size indicates the number of samples to be stored in the process memory before the dump to disk.
This avoids disk access each time a sample is received.
By default, its value is set to 100.

3.1.2.3. Event Window

DDS Recorder can be configured to continue saving data when it is in paused mode.
Thus, when an event is triggered from the remote controller, samples received in the last event-window seconds are stored in the database.

In other words, the event-window acts as a sliding time window that allows to save the collected samples in this time window only when the remote controller event is received.
By default, its value is set to 20 seconds.

3.1.2.4. Log Publish Time

By default (log-publish-time: false) received messages are stored in the MCAP file with logTime value equals to the reception timestamp.
Additionally, the timestamp corresponding to when messages were initially published (publishTime) is also included in the information dumped to MCAP files.
In some applications, it may be required to use the publishTime as logTime, which can be achieved by providing the log-publish-time: true configuration option.

3.1.2.5. Max Reception Rate

Limits the frequency [Hz] at which samples are processed, by discarding messages received before 1/max-reception-rate seconds have elapsed since the last processed message was received.
When specified, max-reception-rate is set for all topics without distinction, but a different value can also set for a particular topic under the qos configuration tag within the builtin-topics list.
This parameter only accepts integer values, and its default value is 0 (no limit).

3.1.2.6. Downsampling

Reduces the sampling rate of the received data by keeping 1 out of every n samples received (per topic), where n is the value specified in downsampling.
If max-reception-rate is also set, downsampling applies to messages that already managed to pass this filter.
When specified, this downsampling factor is set for all topics without distinction, but a different value can also set for a particular topic under the qos configuration tag within the builtin-topics list.
This parameter only accepts positive integer values, and its default value is 1 (no downsampling).

3.1.3. Remote Controller

Configuration of the DDS remote control system.
Please refer to Remote Control for further information on how to use DDS Recorder remotely.
The supported configurations are:

	Parameter

	Tag

	Description

	Data type

	Default value

	Possible values

	Enable

	enable

	Enable DDS remote

control system topics.

	boolean

	true

	true

false

	DDS Domain

	domain

	DDS Domain of the DDS

remote control system.

	integer

	DDS domain being recorded

	From 0 to 255

	Initial state

	initial-state

	Initial state of DDS Recorder.

	string

	RUNNING

	RUNNING

PAUSED

STOPPED

	Command Topic Name

	command-topic-name

	Name of Controller

Command DDS Topic.

	string

	/ddsrecorder/command

	

	Status Topic Name

	status-topic-name

	Name of Controller

Status DDS Topic.

	string

	/ddsrecorder/status

	

3.1.4. Specs Configuration

The internals of a DDS Recorder can be configured using the specs optional tag that contains certain options related with the overall configuration of the DDS Recorder instance to run.
The values available to configure are:

3.1.4.1. Number of Threads

specs supports a threads optional value that allows the user to set a maximum number of threads for the internal ThreadPool.
This ThreadPool allows to limit the number of threads spawned by the application.
This improves the performance of the internal data communications.

This value should be set by each user depending on each system characteristics.
In case this value is not set, the default number of threads used is 12.

3.1.4.2. Maximum Number of Pending Samples

It is possible that a DDS Recorder starts receiving data from a topic that it has not yet registered, i.e. a topic for which it does not know the data type.
In order not to discard the samples received from this topic, it is possible to keep a limited number of samples in an internal circular buffer that stores those samples that do not yet have a known data type.
The max-pending-samples parameter allows to configure the size of this circular buffer for each topic that is discovered.
The default value is equal to 5000 samples.

3.1.4.3. Cleanup Period

As explained in Event Window, a DDS Recorder in paused mode awaits for an event command to write in disk all samples received in the last event-window seconds.
To accomplish this, received samples are stored in memory until the aforementioned event is triggered and, in order to limit memory consumption, outdated (received more than event-window seconds ago) samples are removed from this buffer every cleanup-period seconds.
By default, its value is equal to twice the event-window.

3.1.5. General Example

A complete example of all the configurations described on this page can be found below.

dds:
 domain: 0

 allowlist:
 - name: "topic_name"
 type: "topic_type"

 blocklist:
 - name: "topic_name"
 type: "topic_type"

 builtin-topics:
 - name: "HelloWorldTopic"
 type: "HelloWorld"
 qos:
 reliability: true
 durability: true
 keyed: false
 partitions: true
 ownership: false
 downsampling: 4
 max-reception-rate: 10

recorder:
 output:
 filename: "output"
 path: "."

 buffer-size: 50
 event-window: 60
 log-publish-time: false
 downsampling: 3
 max-reception-rate: 20

remote-controller:
 enable: true
 domain: 10
 initial-state: "PAUSED"
 command-topic-name: "/ddsrecorder/command"
 status-topic-name: "/ddsrecorder/status"

specs:
 threads: 8
 max-pending-samples: 10
 cleanup-period: 90

3.2. Fast DDS Configuration

As mentioned before, the DDS Recorder requires the topic types in order to be able to record the data of such topics.
This requires that the user application needs to be configured to send the required type information.
However, Fast DDS does not send the data type information by default, it must be configured to do so.
First of all, when generating the topic types using eProsima Fast DDS Gen, the option -typeobject must be added in order to generate the needed code to fill the TypeObject data.

For native types (data types that does not rely in other data types) this is enough, as Fast DDS will send the TypeObject by default.
However, for more complex types, it is required to use TypeInformation mechanism.
In the Fast DDS DomainParticipant set the following QoS in order to send this information:

DomainParticipantQos pqos;
pqos.wire_protocol().builtin.typelookup_config.use_server = true;

4. Remote Control

The DDS Recorder application from eProsima DDS Record allows remote control and monitoring of the tool via DDS.
Thus it is possible both to monitor the execution status of the DDS Recorder and to control the execution status of this application.

Moreover, eProsima provides a remote controlling tool that allows to visualize the status of a DDS Recorder and to send commands to it to change its current status.

This section explains the different execution states of a DDS Recorder, how to create your own tool using the DDS topics that the application defines to control its behavior, and the presentation of the eProsima user application for the remote control of the DDS Recorder.

4.1. DDS Recorder Statuses

The DDS Recorder application may have the following states:

	CLOSED: The application is not running.
To start running the application it is required to launch it from the terminal by executing ddsrecorder.
Once the ddsrecorder application is executed, it will automatically go into recording mode (RUNNING state), although this can be modified through the .yaml configuration file.
Please refer to the DDS Recorder remote controller configuration section for more options on the initial state of the application.

	RUNNING: The application is running and recording data in the database.

	PAUSED: The application is running but not recording data in the database.
In this state, the application stores the data it has received in a time window prior to the current time.
The data will not be saved to the database until an event arrives from the remote controller.

	STOPPED: The application is running but not receiving data.

To change from one state to another, commands can be sent to the application through the Controller Command DDS topic to be defined later.
The commands that the application accepts are as follows:

	start: Changes to RUNNING state if it was not in it.

	pause: Changes to PAUSED state if it was not in it.

	stop: Changes to STOPPED state if it was not in it.

	event: Triggers a recording event to save the data of the time window prior to the event.
This command can take the next state as an argument, so it is possible to trigger an event and change the state with the same command.
This is useful when the recorder is in a paused state, the user wants to record all the data collected in the current time window and then immediately switch to RUNNING state to start recording data.
It could also be the case that the user wants to capture the event, save the data and then stop the recorder to inspect the output file.
The arguments are sent as a serialized json in string format.

	close: Closes the DDS Recorder application.

The following is the state diagram of the DDS Recorder application with all the available commands and the state change effect they cause.

[image: ../../../_images/recorder_state_diagram.png]

4.2. DDS Controller Data Types

The DDS Recorder contains a DDS subscriber in the Controller Command topic and a DDS publisher in the Controller Status topic.
These topics’ names are by default /ddsrecorder/command and /ddsrecorder/status, respectively, but can also be specified by users via the command-topic-name and status-topic-name configuration tags.
Therefore, any user can create his own application to control the DDS Recorder remotely by creating a publisher in the Controller Command topic, which sends commands to the recorder, and a subscriber in the Controller Status topic to monitor its status.

Note

Status and command topics are not blocked by default, i.e. messages on this topics will be recorded if listening on the same domain the controller is launched.
If willing to avoid this, include these topics in the blocklist:

dds:
 blocklist:
 - type: DdsRecorderStatus
 - type: DdsRecorderCommand

The following is a description of the aforementioned control topics.

	Command topic:

	Topic name: Specified in command-topic-name configuration parameter (Default: /ddsrecorder/command)

	Topic type name: DdsRecorderCommand

	Type description:

	IDL definition

struct DdsRecorderCommand
{
 string command;
 string args;
};

	DdsRecorderCommand type description:

	Argument

	Description

	Data type

	Possible values

	command

	Command to send.

	string

	start

pause

stop

event

close

	args

	Arguments of the command. This arguments

should contain a JSON serialized string.

	string

	
	event command:

{"next_state": "RUNNING"}

{"next_state": "STOPPED"}

	Status topic:

	Topic name: Specified in status-topic-name configuration parameter (Default: /ddsrecorder/status)

	Topic type name: DdsRecorderStatus

	Type description:

	IDL definition

struct DdsRecorderStatus
{
 string previous;
 string current;
 string info;
};

	DdsRecorderStatus type description:

	Argument

	Description

	Data type

	Possible values

	previous

	Previous status of the DDS Recorder.

	string

	RUNNING

PAUSED

STOPPED

	current

	Current status of the DDS Recorder.

	string

	RUNNING

PAUSED

STOPPED

	info

	Additional information related to the state change. (Unused)

	string

	-

4.3. DDS Recorder remote controller application

eProsima DDS Record provides a graphical user application that implements a remote controller for the DDS Recorder.
Thus the user can control a DDS Recorder instance using this application without having to implement their own.

Note

If installing DDS Recorder from sources, compilation flag -DBUILD_DDSRECORDER_CONTROLLER=ON is required to build this application.

Its interface is quite simple and intuitive.
Once the application is launched, a layout as the following one should be visible:

[image: ../../../_images/controller_init.png]

If the controller should function in a domain different than the default one (0), change it by clicking File->DDS Domain and introducing the one desired:

[image: ../../../_images/controller_domain.png]

When a DDS Recorder instance is found in the domain, a message is displayed in the logging panel:

[image: ../../../_images/controller_found.png]

From this point on, it is possible to interact with the recorder application by pushing any of the buttons appearing on the left.
Every command sent is reflected in the logging panel and, additionally, the recorder application publishes its current status with every state transition undergone.
This can be observed in the eProsima DDS Recorder status placeholder, located in the upper part of the layout:

[image: ../../../_images/controller_interact.png]

By clicking on Stop button, the recorder application ceases recording, but can be commanded to Start / Pause whenever wished.
Once the user has finished all recording activity, it is possible to Close the recorder and free all resources used by the application:

[image: ../../../_images/controller_close.png]

Note that once CLOSED state has been reached, commands will no longer have an effect on the recorder application as its process is terminated when a close command is received.

5. Nomenclature

5.1. DDS Recorder nomenclature

	MCAP
	Modular container file format for heterogeneous timestamped data.

	DynamicTypes
	The dynamic topic types offer the possibility to work over DDS without the restrictions related to the IDLs.
Using them, the users can declare the different types that they need and manage the information directly, avoiding the additional step of updating the IDL file and the generation of C++ classes.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html]
for further information.

5.2. DDS nomenclature

	DataReader
	DDS element that subscribes to a specific Topic.
It belong to one and only one Participant, and it is uniquely identified by a Guid.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/subscriber/subscriber.html]
for further information.

	DataWriter
	DDS entity that publish data in a specific Topic.
It belong to one and only one Participant, and it is uniquely identified by a Guid.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/publisher/dataWriter/dataWriter.html]
for further information.

	Domain Id
	The Domain Id is a virtual partition for DDS networks.
Only DomainParticipants with the same Domain Id would be able to communicate to each other.
DomainParticipants in different Domains will not even discover each other.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1//fastdds/dds_layer/domain/domain.html]
for further information.

	DomainParticipant
	A DomainParticipant is the entry point of the application to a DDS Domain.
Every DomainParticipant is linked to a single domain from its creation, and cannot change such domain.
It also acts as a factory for Publisher, Subscriber and Topic.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/domain/domainParticipant/domainParticipant.html]
for further information.

	Endpoint
	DDS element that publish or subscribes in a specific Topic. Endpoint kinds are DataWriter or DataReader.

	Guid
	Global Unique Identifier.
It contains a GuidPrefix and an EntityId.
The EntityId uniquely identifies sub-entities inside a Participant.
Identifies uniquely a DDS entity (DomainParticipant, DataWriter or DataReader).

	GuidPrefix
	Global Unique Identifier shared by a Participant and all its sub-entities.
Identifies uniquely a DDS Participant.

	Topic
	DDS isolation abstraction to encapsulate subscriptions and publications.
Each Topic is uniquely identified by a topic name and a topic type name (name of the data type it transmits).

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/topic/topic.html]
for further information.

6. Tutorials

This section will provide a collection of tutorials both on the use and application of the basic functionality, as well as on the exploitation of DDS Recorder for more advanced users.

	6.1. Configuring Fast DDS DynamicTypes for data recording

	6.2. Visualize recorded data with Foxglove

6.1. Configuring Fast DDS DynamicTypes for data recording

	Background

	Prerequisites

	Generating data types

	DDS Publisher

	Data types

	Examining the code

	DDS Subscriber

	Examining the code

	Running the application

	Recording samples with DDS Recorder

	Publisher <-> Subscriber

6.1.1. Background

Currently, the DDS Recorder only stores DDS data whose data type is set as a DynamicType.
The reason for this is that, without the need for the user to set the data type in the DDS Recorder, the DDS Recorder can access it via the type lookup service.
Thus, the user will be able to record the published data using the DDS Recorder tool of the eProsima DDS Record software.

The source code of this tutorial can be found in the public eProsima DDS Record GitHub repository [https://github.com/eProsima/DDS-Recorder/tree/main/resources/dds/TypeLookupService] with an explanation of how to build and run it.

This tutorial focuses on how to send the data type information using Fast DDS DynamicTypes and other relevant aspects of DynamicTypes.
More specifically, this tutorial implements a DDS Publisher configured to send its data type, a DDS Subscriber that collects the data type and is able to read the incoming data, and a DDS Recorder is launched to save all the data published on the network.
For more information about how to create the workspace with a basic DDS Publisher and a basic DDS Subscriber, please refer to Writing a simple C++ publisher and subscriber application [https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/simple_app/simple_app.html] .

6.1.2. Prerequisites

Ensure that eProsima DDS Record is installed together with eProsima dependencies, i.e. Fast DDS, Fast CDR and DDS Pipe.

If eProsima DDS Record was installed using the recommended installation [https://dds-recorder.readthedocs.io/en/latest/rst/installation/docker.html] the environment is source by default, otherwise, just remember to source it in every terminal in this tutorial:

source <path-to-fastdds-installation>/install/setup.bash
source <path-to-ddspipe-installation>/install/setup.bash
source <path-to-ddsrecorder-installation>/install/setup.bash

6.1.3. Generating data types

eProsima Fast DDS-Gen [https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html] is a Java application that generates eProsima Fast DDS source code using the data types defined in an IDL (Interface Definition Language) file.
When generating the Types using eProsima Fast DDS Gen, the option -typeobject must be added in order to generate the needed code to fill the TypeInformation data.

The expected argument list of the application is:

fastddsgen -typeobject MyType.idl

6.1.4. DDS Publisher

The DDS publisher will be configured to act as a server of the data types of the data it publishes.

However, Fast DDS does not send the data type information by default, it must be configured to do so.

6.1.4.1. Data types

At the moment, there are two data types that can be used:

	HelloWorld.idl [https://github.com/eProsima/DDS-Recorder/blob/main/resources/dds/TypeLookupService/types/hello_world/HelloWorld.idl]

struct HelloWorld
{
 unsigned long index;
 string message;
};

	Complete.idl [https://github.com/eProsima/DDS-Recorder/blob/main/resources/dds/TypeLookupService/types/complete/Complete.idl]

struct Timestamp
{
 long seconds;
 long milliseconds;
};

struct Point
{
 long x;
 long y;
 long z;
};

struct MessageDescriptor
{
 unsigned long id;
 string topic;
 Timestamp time;
};

struct Message
{
 MessageDescriptor descriptor;
 string message;
};

struct CompleteData
{
 unsigned long index;
 Point main_point;
 sequence<Point> internal_data;
 Message messages[2];
};

6.1.4.2. Examining the code

This section explains the C++ source code of the DDS Publisher, which can also be found here [https://github.com/eProsima/DDS-Recorder/blob/main/resources/dds/TypeLookupService].

The private data members of the class defines the DDS Topic, DataTypeKind, DDS Topic type and DynamicType.
The DataTypeKind defines the type to be used by the application (HelloWorld or Complete).
For simplicity, this tutorial only covers the code related to the HelloWorld type.

 //! Name of the DDS Topic
 std::string topic_name_;
 //! The user can choose between HelloWorld and Complete types so this defines the chosen type
 DataTypeKind data_type_kind_;
 //! Name of the DDS Topic type according to the DataTypeKind
 std::string data_type_name_;
 //! Actual DynamicType generated according to the DataTypeKind
 eprosima::fastrtps::types::DynamicType_ptr dynamic_type_;

The next lines show the constructor of the TypeLookupServicePublisher class that implements the publisher.
The publisher is created with the topic and data type to use.

TypeLookupServicePublisher::TypeLookupServicePublisher(
 const std::string& topic_name,
 const uint32_t domain,
 DataTypeKind data_type_kind)
 : participant_(nullptr)
 , publisher_(nullptr)
 , topic_(nullptr)
 , datawriter_(nullptr)
 , topic_name_(topic_name)
 , data_type_kind_(data_type_kind)

Inside the TypeLookupServicePublisher constructor are defined the DomainParticipantQos.
As the publisher act as a server of types, its QoS must be configured to send this information.
Set use_client to false and use_server to true.

 DomainParticipantQos pqos;
 pqos.name("TypeLookupService_Participant_Publisher");

 pqos.wire_protocol().builtin.typelookup_config.use_client = false;
 pqos.wire_protocol().builtin.typelookup_config.use_server = true;

Next, we register the type in the participant:

	Generate the dynamic type through generate_helloworld_type_() explained below.

	Set the data type.

	Create the TypeSupport with the dynamic type previously created.

	Configure the type to fill automatically the TypeInformation and not TypeObject to be compliant with DDS-XTypes 1.2. [https://www.omg.org/spec/DDS-XTypes/1.2] standard.

 switch (data_type_kind_)
 {
 case DataTypeKind::HELLO_WORLD:
 dynamic_type_ = generate_helloworld_type_();
 data_type_name_ = HELLO_WORLD_DATA_TYPE_NAME;
 break;
 case DataTypeKind::COMPLETE:
 dynamic_type_ = generate_complete_type_();
 data_type_name_ = COMPLETE_DATA_TYPE_NAME;
 break;
 default:
 throw std::runtime_error("Not recognized DynamicType kind");
 break;
 }

 TypeSupport type(new eprosima::fastrtps::types::DynamicPubSubType(dynamic_type_));

 // Send type information so the type can be discovered
 type->auto_fill_type_information(true);
 type->auto_fill_type_object(false);

 // Register the type in the Participant
 participant_->register_type(type);

The function generate_helloworld_type_() returns the dynamic type generated with the TypeObject and TypeIdentifier of the type.

eprosima::fastrtps::types::DynamicType_ptr
 TypeLookupServicePublisher::generate_helloworld_type_() const
{
 // Generate HelloWorld type using methods from Fast DDS Gen autogenerated code
 registerHelloWorldTypes();

 // Get the complete type object and type identifier of the dynamic type
 auto type_object = GetHelloWorldObject(true);
 auto type_id = GetHelloWorldIdentifier(true);

 // Use data type name, type identifier and type object to build the dynamic type
 return eprosima::fastrtps::types::TypeObjectFactory::get_instance()->build_dynamic_type(
 HELLO_WORLD_DATA_TYPE_NAME,
 type_id,
 type_object);
}

Then we initialized the Publisher, DDS Topic and DDS DataWriter.

To make the publication, the public member function publish() is implemented:

	It creates the variable that will contain the user data, dynamic_data_.

	Fill that variable with the function fill_helloworld_data_(msg), explained below.

void TypeLookupServicePublisher::publish(unsigned int msg_index)
{
 // Get the dynamic data depending on the data type
 eprosima::fastrtps::types::DynamicData_ptr dynamic_data_;
 switch (data_type_kind_)
 {
 case DataTypeKind::HELLO_WORLD:
 dynamic_data_ = fill_helloworld_data_(msg_index);
 break;
 case DataTypeKind::COMPLETE:
 dynamic_data_ = fill_complete_data_(msg_index);
 break;

 default:
 throw std::runtime_error("Not recognized DynamicType kind");
 break;
 }

 // Publish data
 datawriter_->write(dynamic_data_.get());

 // Print the message published
 std::cout << "Message published: " << std::endl;
 eprosima::fastrtps::types::DynamicDataHelper::print(dynamic_data_);
 std::cout << "---" << std::endl;
}

The function fill_helloworld_data_() returns the data to be sent with the information filled in.

First, the Dynamic_ptr that will be filled in and returned is created.
Using the DynamicDataFactory we create the data that corresponds to our data type.
Finally, data variables are assigned, in this case, index and message.

eprosima::fastrtps::types::DynamicData_ptr
 TypeLookupServicePublisher::fill_helloworld_data_(
 const unsigned int& index)
{
 // Create and initialize new dynamic data
 eprosima::fastrtps::types::DynamicData_ptr new_data;
 new_data = eprosima::fastrtps::types::DynamicDataFactory::get_instance()->create_data(dynamic_type_);

 // Set index
 new_data->set_uint32_value(index, 0);
 // Set message
 new_data->set_string_value("Hello World", 1);

 return new_data;
}

6.1.5. DDS Subscriber

The DDS Subscriber is acting as a client of types, i.e. the subscriber will not know the types beforehand and it will discovery the data type via the type lookup service implemented on the publisher side.

6.1.5.1. Examining the code

This section explains the C++ source code of the DDS Subscriber, which can also be found here [https://github.com/eProsima/DDS-Recorder/blob/main/resources/dds/TypeLookupService].

The private data members of the class defines the DDS Topic, DDS Topic type and DynamicType.

 //! Name of the DDS Topic
 std::string topic_name_;
 //! Name of the received DDS Topic type
 std::string type_name_;
 //! DynamicType generated with the received type information
 eprosima::fastrtps::types::DynamicType_ptr dynamic_type_;

The next lines show the constructor of the TypeLookupServiceSubscriber class that implements the subscriber setting the topic name as the one configured in the
publisher side.

TypeLookupServiceSubscriber::TypeLookupServiceSubscriber(
 const std::string& topic_name,
 uint32_t domain)
 : participant_(nullptr)
 , subscriber_(nullptr)
 , topic_(nullptr)
 , datareader_(nullptr)
 , topic_name_(topic_name)
 , samples_(0)

The DomainParticipantQos are defined inside the TypeLookupServiceSubscriber constructor.
As the subscriber act as a client of types, set the QoS in order to receive this information.
Set use_client to true and use_server to false.

 DomainParticipantQos pqos;
 pqos.name("TypeLookupService_Participant_Subscriber");

 pqos.wire_protocol().builtin.typelookup_config.use_client = true;
 pqos.wire_protocol().builtin.typelookup_config.use_server = false;

Then, the Subscriber is initialized.

Inside on_data_available() callback function the DynamicData_ptr is created, which will be filled with the actual data received.

As in the subscriber, the DynamicDataFactory is used for the creation of the data that corresponds to our data type.

void TypeLookupServiceSubscriber::on_data_available(
 DataReader* reader)
{
 // Create a new DynamicData to read the sample
 eprosima::fastrtps::types::DynamicData_ptr new_dynamic_data;
 new_dynamic_data = eprosima::fastrtps::types::DynamicDataFactory::get_instance()->create_data(dynamic_type_);

 SampleInfo info;

 // Take next sample until we've read all samples or the application stopped
 while ((reader->take_next_sample(new_dynamic_data.get(), &info) == ReturnCode_t::RETCODE_OK) && !is_stopped())
 {
 if (info.instance_state == ALIVE_INSTANCE_STATE)
 {
 samples_++;

 std::cout << "Message " << samples_ << " received:\n" << std::endl;
 eprosima::fastrtps::types::DynamicDataHelper::print(new_dynamic_data);
 std::cout << "---" << std::endl;

 // Stop if all expecting messages has been received (max_messages number reached)
 if (max_messages_ > 0 && (samples_ >= max_messages_))
 {
 stop();
 }
 }
 }
}

The function on_type_information_received() detects if new topic information has been received in order to proceed to register the topic in case it has the same name as the expected one.
To register a remote topic, function register_remote_type_callback_() is used.
Once the topic has been discovered and registered, it is created a DataReader on this topic.

void TypeLookupServiceSubscriber::on_type_information_received(
 eprosima::fastdds::dds::DomainParticipant*,
 const eprosima::fastrtps::string_255 topic_name,
 const eprosima::fastrtps::string_255 type_name,
 const eprosima::fastrtps::types::TypeInformation& type_information)
{
 // First check if the topic received is the one we are expecting
 if (topic_name.to_string() != topic_name_)
 {
 std::cout <<
 "Discovered type information from topic < " << topic_name.to_string() <<
 " > while expecting < " << topic_name_ << " >. Skipping..." << std::endl;
 return;
 }

 // Set the topic type as discovered
 bool already_discovered = type_discovered_.exchange(true);
 if (already_discovered)
 {
 return;
 }

 std::cout <<
 "Found type in topic < " << topic_name_ <<
 " > with name < " << type_name.to_string() <<
 " > by lookup service. Registering..." << std::endl;

 // Create the callback to register the remote dynamic type
 std::function<void(const std::string&, const eprosima::fastrtps::types::DynamicType_ptr)> callback(
 [this]
 (const std::string& name, const eprosima::fastrtps::types::DynamicType_ptr type)
 {
 this->register_remote_type_callback_(name, type);
 });

 // Register the discovered type and create a DataReader on this topic
 participant_->register_remote_type(
 type_information,
 type_name.to_string(),
 callback);
}

The function register_remote_type_callback_(), which is in charge of register the topic received, is explained below.
First, it creates a TypeSupport with the corresponding type and registers it into the participant.
Then, it creates the DDS Topic with the topic name set in the creation of the Subscriber and the topic type previously registered.
Finally, it creates the DataReader of that topic.

void TypeLookupServiceSubscriber::register_remote_type_callback_(
 const std::string&,
 const eprosima::fastrtps::types::DynamicType_ptr dynamic_type)
{
 ////////////////////
 // Register the type
 TypeSupport type(new eprosima::fastrtps::types::DynamicPubSubType(dynamic_type));
 type.register_type(participant_);

 ///////////////////////
 // Create the DDS Topic
 topic_ = participant_->create_topic(
 topic_name_,
 dynamic_type->get_name(),
 TOPIC_QOS_DEFAULT);

 if (topic_ == nullptr)
 {
 return;
 }

 ////////////////////////
 // Create the DataReader
 datareader_ = subscriber_->create_datareader(
 topic_,
 DATAREADER_QOS_DEFAULT,
 this);

6.1.6. Running the application

6.1.6.1. Recording samples with DDS Recorder

Open two terminals:

	In the first terminal, run an instance of the described publisher:

source install/setup.bash
cd DDS-Recorder/build/TypeLookupService
./TypeLookupService

	In the second terminal, run the ddsrecorder:

source install/setup.bash
ddsrecorder

Stop the DDS Recorder at any time to save the output MCAP file containing the recorded data.

6.1.6.2. Publisher <-> Subscriber

Open two terminals:

	In the first terminal, run the DDS Publisher:

source install/setup.bash
cd DDS-Recorder/build/TypeLookupService
./TypeLookupService --entity publisher

	In the second terminal, run the DDS Subscriber:

source install/setup.bash
cd DDS-Recorder/build/TypeLookupService
./TypeLookupService --entity subscriber

At this point, we observe that the data published reach the subscriber and it can access to the content of the sample received.

[image: ../../../_images/basic_publisher_subscriber.png]

6.2. Visualize recorded data with Foxglove

	Background

	Prerequisites

	Configuring DDS Recorder

	Running the application

	Start ShapesDemo

	Recorder execution

	Visualize data with Foxglove Studio

6.2.1. Background

This tutorial explains how to record data with DDS Recorder tool and visualize it with Foxglove Studio [https://foxglove.dev/studio].

6.2.2. Prerequisites

It is required to have eProsima DDS Record previously installed using one of the following installation methods:

	DDS Recorder on Windows

	DDS Recorder on Linux

	Docker Image (recommended)

Additionally, we will use ShapesDemo [https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo] as a DDS Demo application to publish the data that will be recorded.
This application is already prepared to use Fast DDS DynamicTypes, which is required when using the DDS Recorder tool.
Download eProsima Shapes Demo from eProsima website [https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo] or install it by following any of the methods described in the given links:

	Windows installation from binaries [https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/windows_binaries.html]

	Linux installation from sources [https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/linux_sources.html]

	Docker Image [https://eprosima-shapes-demo.readthedocs.io/en/latest/installation/docker_image.html]

6.2.3. Configuring DDS Recorder

The DDS Recorder runs with default configuration parameters, but can also be configured via a YAML file.
In this tutorial we will use a configuration file to change some default parameters and show how this file is loaded.
The configuration file to be used is the following:

dds:
 domain: 0

recorder:
 output:
 filename: "shapesdemo_data"
 path: "."

The previous configuration file configures a recorder in DDS Domain 0 and save the output file as shapesdemo_data_<YYYY-MM-DD_hh-mm-ss>.mcap, being <YYYY-MM-DD_hh-mm-ss> the timestamp of the time at which the DDS Recorder started recording.

Create a new file named conf.yaml and copy the above snippet into this file.

6.2.4. Running the application

6.2.4.1. Start ShapesDemo

Launch eProsima Shapes Demo application running the following command:

ShapesDemo

Start publishing in topics Square, Triangle, and Circle with default settings:

[image: ../../../_images/foxglove_shapesdemo.png]

6.2.4.2. Recorder execution

Launch the DDS Recorder tool passing the configuration file as an argument:

ddsrecorder -c <path/to/config/file>/conf.yaml

Once you have all the desired data, close the DDS Recorder application with Ctrl+C.

Important

Please remember to close the DDS Recorder application before accessing the output file as the .mcap file needs to be properly closed.

6.2.4.3. Visualize data with Foxglove Studio

Finally, we will show how to load the generated MCAP file into Foxglove Studio in order to display the saved data.

	Open Foxglove Studio [https://studio.foxglove.dev/] web application using Google Chrome or download the desktop application from their Foxglove website [https://foxglove.dev/].
We recommend to use the web application as the it is usually up to date with the latest features.

	Click Open local file and load the .mcap file previously created: shapesdemo_data.mcap.

	Once the .mcap file is loaded, create your own layout with custom panels to visualize the recorded data.
The image below shows an example of a dashboard with several panels for data introspection.

[image: ../../../_images/foxglove_studio_shapesdemo.png]

Feel free to further explore the number of possibilities that eProsima DDS Record and Foxglove Studio together have to offer.

1. Linux installation from sources

The instructions for installing the eProsima DDS Record from sources and its required dependencies are provided in this page.
It is organized as follows:

	Dependencies installation

	Requirements

	Dependencies

	Colcon installation (recommended)

	CMake installation

	Local installation

	Global installation

	Run an application

1.1. Dependencies installation

DDS Recorder depends on eProsima Fast DDS library and certain Debian packages.
This section describes the instructions for installing DDS Recorder dependencies and requirements in a Linux environment from sources.
The following packages will be installed:

	foonathan_memory_vendor, an STL compatible C++ memory allocation library.

	fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

	fastrtps, the core library of eProsima Fast DDS library.

	cmake_utils, an eProsima utils library for CMake.

	cpp_utils, an eProsima utils library for C++.

	ddspipe, an eProsima internal library that enables the communication of DDS interfaces.

First of all, the Requirements and Dependencies detailed below need to be met.
Afterwards, the user can choose whether to follow either the colcon or the
CMake installation instructions.

1.1.1. Requirements

The installation of eProsima DDS Record in a Linux environment from sources requires the following tools to be installed in the system:

	CMake, g++, pip, wget and git

	Colcon [optional]

	Fast DDS Python [for remote controller only]

	Gtest [for test only]

1.1.1.1. CMake, g++, pip, wget and git

These packages provide the tools required to install eProsima DDS Record and its dependencies from command line.
Install CMake [https://cmake.org], g++ [https://gcc.gnu.org/], pip [https://pypi.org/project/pip/], wget [https://www.gnu.org/software/wget/] and git [https://git-scm.com/] using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install cmake g++ pip wget git

1.1.1.2. Colcon

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note

If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

1.1.1.3. Fast DDS Python

eProsima Fast DDS Python [https://github.com/eProsima/Fast-DDS-python/] is a Python binding for the eProsima Fast DDS C++ library.
It is only required for the remote controller application.

Clone the Github repository into the eProsima DDS Record workspace and compile it with colcon [https://colcon.readthedocs.io/en/released/] as a dependency package.
Use the following command to download the code:

git clone https://github.com/eProsima/Fast-DDS-python.git src/Fast-DDS-python

1.1.1.4. Gtest

Gtest [https://github.com/google/googletest] is a unit testing library for C++.
By default, eProsima DDS Record does not compile tests.
It is possible to activate them with the opportune CMake options [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options] when calling colcon [https://colcon.readthedocs.io/en/released/] or CMake [https://cmake.org].
For more details, please refer to the CMake options section.
For a detailed description of the Gtest [https://github.com/google/googletest] installation process, please refer to the Gtest Installation Guide [https://github.com/google/googletest].

It is also possible to clone the Gtest [https://github.com/google/googletest] Github repository into the eProsima DDS Record workspace and compile it with colcon [https://colcon.readthedocs.io/en/released/] as a dependency package.
Use the following command to download the code:

git clone --branch release-1.11.0 https://github.com/google/googletest src/googletest-distribution

1.1.2. Dependencies

eProsima DDS Record has the following dependencies, when installed from sources in a Linux environment:

	Asio and TinyXML2 libraries

	OpenSSL

	yaml-cpp

	SWIG [for remote controller only]

	MCAP dependencies

	eProsima dependencies

1.1.2.1. Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asynchronous model.
TinyXML2 is a simple, small and efficient C++ XML parser.
Install these libraries using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

1.1.2.2. OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library.
Install OpenSSL [https://www.openssl.org/] using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libssl-dev

1.1.2.3. yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Recorder application to parse the provided configuration files.
Install yaml-cpp using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libyaml-cpp-dev

1.1.2.4. SWIG

SWIG [https://www.swig.org] is a software development tool that connects programs written in C and C++ with a variety of high-level programming languages.
It is leveraged by Fast DDS Python to generate a Python wrapper over Fast DDS library.
SWIG is only a requirement for the remote controller application.
It can be installed using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install swig libpython3-dev

1.1.2.5. MCAP dependencies

MCAP [https://github.com/foxglove/mcap] is a modular container format and logging library for pub/sub messages with arbitrary message serialization.
It is primarily intended for use in robotics applications, and works well under various workloads, resource constraints, and durability requirements.
MCAP C++ library is packed within DDS Recorder as a header-only, but its dependencies need to be installed using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install liblz4-dev libzstd-dev

1.1.2.6. eProsima dependencies

If it already exists in the system an installation of Fast DDS and DDS Pipe libraries, just source this libraries when building eProsima DDS Record by running the following commands.
In other case, just skip this step.

source <fastdds-installation-path>/install/setup.bash
source <ddspipe-installation-path>/install/setup.bash

1.2. Colcon installation (recommended)

	Create a DDS-Record directory and download the .repos file that will be used to install eProsima DDS Record and its dependencies:

mkdir -p ~/DDS-Record/src
cd ~/DDS-Record
wget https://raw.githubusercontent.com/eProsima/DDS-Recorder/main/ddsrecorder.repos
vcs import src < ddsrecorder.repos

Note

In case there is already a Fast DDS installation in the system it is not required to download and build every dependency in the .repos file.
It is just needed to download and build the eProsima DDS Record project having sourced its dependencies.
Refer to section eProsima dependencies in order to check how to source Fast DDS library.

	Build the packages:

colcon build

Note

To install both DDS Recorder and its remote controller application, compilation flag -DBUILD_DDSRECORDER_CONTROLLER=ON is required.

Note

Being based on CMake [https://cmake.org], it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments] page of the colcon [https://colcon.readthedocs.io/en/released/] manual.

1.3. CMake installation

This section explains how to compile eProsima DDS Record with CMake [https://cmake.org], either locally or globally.

1.3.1. Local installation

	Create a DDS-Recorder directory where to download and build DDS Recorder and its dependencies:

mkdir -p ~/DDS-Record/src
mkdir -p ~/DDS-Record/build
cd ~/DDS-Record
wget https://raw.githubusercontent.com/eProsima/DDS-Recorder/main/ddsrecorder.repos
vcs import src < ddsrecorder.repos

	Compile all dependencies using CMake [https://cmake.org].

	Foonathan memory [https://github.com/foonathan/memory]

cd ~/DDS-Record
mkdir build/foonathan_memory_vendor
cd build/foonathan_memory_vendor
cmake ~/DDS-Record/src/foonathan_memory_vendor -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

	Fast CDR [https://github.com/eProsima/Fast-CDR]

cd ~/DDS-Record
mkdir build/fastcdr
cd build/fastcdr
cmake ~/DDS-Record/src/fastcdr -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install
cmake --build . --target install

	Fast DDS [https://github.com/eProsima/Fast-DDS]

cd ~/DDS-Record
mkdir build/fastdds
cd build/fastdds
cmake ~/DDS-Record/src/fastdds -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

	Dev Utils [https://github.com/eProsima/dev-utils]

CMake Utils
cd ~/DDS-Record
mkdir build/cmake_utils
cd build/cmake_utils
cmake ~/DDS-Record/src/dev-utils/cmake_utils -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

C++ Utils
cd ~/DDS-Record
mkdir build/cpp_utils
cd build/cpp_utils
cmake ~/DDS-Record/src/dev-utils/cpp_utils -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

	DDS Pipe [https://github.com/eProsima/DDS-Pipe]

ddspipe_core
cd ~/DDS-Record
mkdir build/ddspipe_core
cd build/ddspipe_core
cmake ~/DDS-Record/src/ddspipe/ddspipe_core -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

ddspipe_participants
cd ~/DDS-Record
mkdir build/ddspipe_participants
cd build/ddspipe_participants
cmake ~/DDS-Record/src/ddspipe/ddspipe_participants -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

ddspipe_yaml
cd ~/DDS-Record
mkdir build/ddspipe_yaml
cd build/ddspipe_yaml
cmake ~/DDS-Record/src/ddspipe/ddspipe_yaml -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

	Once all dependencies are installed, install eProsima DDS Record:

ddsrecorder_participants
cd ~/DDS-Record
mkdir build/ddsrecorder_participants
cd build/ddsrecorder_participants
cmake ~/DDS-Record/src/ddsrecorder/ddsrecorder_participants -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

ddsrecorder_yaml
cd ~/DDS-Record
mkdir build/ddsrecorder_yaml
cd build/ddsrecorder_yaml
cmake ~/DDS-Record/src/ddsrecorder/ddsrecorder_yaml -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

ddsrecorder
cd ~/DDS-Record
mkdir build/ddsrecorder_tool
cd build/ddsrecorder_tool
cmake ~/DDS-Record/src/ddsrecorder/ddsrecorder -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

Note

By default, eProsima DDS Record does not compile tests.
However, they can be activated by downloading and installing Gtest [https://github.com/google/googletest]
and building with CMake option -DBUILD_TESTS=ON.

	Optionally, install the remote controller application along with its dependency Fast DDS Python:

Fast DDS Python
cd ~/DDS-Record
mkdir build/fastdds_python
cd build/fastdds_python
cmake ~/DDS-Record/src/Fast-DDS-python/fastdds_python -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

Remote Controller Application
cd ~/DDS-Record
mkdir build/controller_tool
cd build/controller_tool
cmake ~/DDS-Record/src/ddsrecorder/controller/controller_tool -DCMAKE_INSTALL_PREFIX=~/DDS-Record/install -DCMAKE_PREFIX_PATH=~/DDS-Record/install
cmake --build . --target install

1.3.2. Global installation

To install eProsima DDS Record system-wide instead of locally, remove all the flags that appear in the configuration steps of Fast-CDR, Fast-DDS, Dev-Utils, DDS-Pipe, and DDS-Record, and change the first in the configuration step of foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

1.4. Run an application

To run the DDS Recorder tool, source the installation path and execute the executable file that has been installed in <install-path>/ddsrecorder_tool/bin/ddsrecorder:

If built has been done using colcon, all projects could be sourced as follows
source install/setup.bash
./<install-path>/ddsrecorder_tool/bin/ddsrecorder

Be sure that this executable has execution permissions.

2. Windows installation from sources

The instructions for installing the eProsima DDS Record application from sources and its required dependencies are provided in this page.
It is organized as follows:

	Dependencies installation

	Requirements

	Dependencies

	Colcon installation (recommended)

	CMake installation

	Local installation

	Global installation

	Run an application

2.1. Dependencies installation

eProsima DDS Record depends on eProsima Fast DDS library and certain Debian packages.
This section describes the instructions for installing eProsima DDS Record dependencies and requirements in a Windows environment from sources.
The following packages will be installed:

	foonathan_memory_vendor, an STL compatible C++ memory allocation library.

	fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

	fastrtps, the core library of eProsima Fast DDS library.

	cmake_utils, an eProsima utils library for CMake.

	cpp_utils, an eProsima utils library for C++.

	ddspipe, an eProsima internal library that enables the communication of DDS interfaces.

First of all, the Requirements and Dependencies detailed below need to be met.
Afterwards, the user can choose whether to follow either the colcon or the CMake installation instructions.

2.1.1. Requirements

The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be installed in the system:

	Visual Studio

	Chocolatey

	CMake, pip3, wget and git

	Colcon [optional]

	Gtest [for test only]

2.1.1.1. Visual Studio

Visual Studio [https://visualstudio.microsoft.com/] is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to Tools -> Get Tools and Features and in the Workloads tab enable Desktop development with C++.
Finally, click Modify at the bottom right.

2.1.1.2. Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies.
Download and install it directly from the website [https://chocolatey.org/].

2.1.1.3. CMake, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake [https://cmake.org], pip3 [https://docs.python.org/3/installing/index.html], wget [https://www.gnu.org/software/wget/] and git [https://git-scm.com/] by following the instructions detailed in the respective websites.
Once installed, add the path to the executables to the PATH from the Edit the system environment variables control panel.

2.1.1.4. Colcon

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note

If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

2.1.1.5. Gtest

Gtest is a unit testing library for C++.
By default, eProsima DDS Record does not compile tests.
It is possible to activate them with the opportune CMake options [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options] when calling colcon [https://colcon.readthedocs.io/en/released/] or CMake [https://cmake.org].
For more details, please refer to the CMake options section.

Run the following commands on your workspace to install Gtest.

git clone https://github.com/google/googletest.git
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\gtest' -Dgtest_force_shared_crt=ON -DBUILD_GMOCK=ON ^
 -B build\gtest -A x64 -T host=x64 googletest
cmake --build build\gtest --config Release --target install

or refer to the Gtest Installation Guide [https://github.com/google/googletest] for a detailed description of the Gtest installation process.

2.1.2. Dependencies

eProsima DDS Record has the following dependencies, when installed from sources in a Windows environment:

	Asio and TinyXML2 libraries

	OpenSSL

	yaml-cpp

	eProsima dependencies

2.1.2.1. Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asynchronous model.
TinyXML2 is a simple, small and efficient C++ XML parser.
They can be downloaded directly from the links below:

	Asio [https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg]

	TinyXML2 [https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg]

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

2.1.2.2. OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library.
Download and install the latest OpenSSL version for Windows at this link [https://slproweb.com/products/Win32OpenSSL.html].
After installing, add the environment variable OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

2.1.2.3. yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Recorder application to parse the provided configuration files.
From an administrative shell with PowerShell, execute the following commands in order to download and install yaml-cpp for Windows:

git clone --branch yaml-cpp-0.7.0 https://github.com/jbeder/yaml-cpp
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\yamlcpp' -B build\yamlcpp yaml-cpp
cmake --build build\yamlcpp --target install # If building in Debug mode, add --config Debug

2.1.2.4. eProsima dependencies

If it already exists in the system an installation of Fast DDS and DDS Pipe libraries, just source this libraries when building the eProsima DDS Record application by using the command:

source <fastdds-installation-path>/install/setup.bash
source <ddspipe-installation-path>/install/setup.bash

In other case, just skip this step.

2.2. Colcon installation (recommended)

Important

Run colcon within a Visual Studio prompt.
To do so, launch a Developer Command Prompt from the search engine.

	Create a DDS-Recorder directory and download the .repos file that will be used to install
eProsima DDS Record and its dependencies:

mkdir <path\to\user\workspace>\DDS-Recorder
cd <path\to\user\workspace>\DDS-Recorder
mkdir src
wget https://raw.githubusercontent.com/eProsima/DDS-Recorder/main/ddsrecorder.repos
vcs import src < ddsrecorder.repos

Note

In case there is already a Fast DDS installation in the system it is not required to download and build
every dependency in the .repos file.
It is just needed to download and build the eProsima DDS Record project having sourced its dependencies.
Refer to section eProsima dependencies in order to check how to source Fast DDS library.

	Build the packages:

colcon build

Note

Being based on CMake [https://cmake.org], it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments] page of the colcon [https://colcon.readthedocs.io/en/released/] manual.

2.3. CMake installation

This section explains how to compile eProsima DDS Record with CMake [https://cmake.org], either locally or globally.

2.3.1. Local installation

	Open a command prompt, and create a DDS-Record directory where to download and build eProsima DDS Record and its dependencies:

mkdir <path\to\user\workspace>\DDS-Record
mkdir <path\to\user\workspace>\DDS-Record\src
mkdir <path\to\user\workspace>\DDS-Record\build
cd <path\to\user\workspace>\DDS-Record
wget https://raw.githubusercontent.com/eProsima/DDS-Recorder/main/ddsrecorder.repos
vcs import src < ddsrecorder.repos

	Compile all dependencies using CMake [https://cmake.org].

	Foonathan memory [https://github.com/foonathan/memory]

cd <path\to\user\workspace>\DDS-Record
mkdir build\foonathan_memory_vendor
cd build\foonathan_memory_vendor
cmake <path\to\user\workspace>\DDS-Record\src\foonathan_memory_vendor -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install ^
 -DBUILD_SHARED_LIBS=ON
cmake --build . --config Release --target install

	Fast CDR [https://github.com/eProsima/Fast-CDR]

cd <path\to\user\workspace>\DDS-Record
mkdir build\fastcdr
cd build\fastcdr
cmake <path\to\user\workspace>\DDS-Record\src\fastcdr -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install
cmake --build . --config Release --target install

	Fast DDS [https://github.com/eProsima/Fast-DDS]

cd <path\to\user\workspace>\DDS-Record
mkdir build\fastdds
cd build\fastdds
cmake <path\to\user\workspace>\DDS-Record\src\fastdds -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install ^
 -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --config Release --target install

	Dev Utils [https://github.com/eProsima/dev-utils]

CMake Utils
cd <path\to\user\workspace>\DDS-Record
mkdir build\cmake_utils
cd build\cmake_utils
cmake <path\to\user\workspace>\DDS-Record\src\dev-utils\cmake_utils -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install ^
 -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --config Release --target install

C++ Utils
cd <path\to\user\workspace>\DDS-Record
mkdir build\cpp_utils
cd build\cpp_utils
cmake <path\to\user\workspace>\DDS-Record\src\dev-utils\cpp_utils -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install ^
 -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --config Release --target install

	DDS Pipe [https://github.com/eProsima/DDS-Pipe]

ddspipe_core
cd <path\to\user\workspace>\DDS-Record
mkdir build\ddspipe_core
cd build\ddspipe_core
cmake cd <path\to\user\workspace>\DDS-Record\src\ddspipe\ddspipe_core -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --target install

ddspipe_yaml
cd <path\to\user\workspace>\DDS-Record
mkdir build\ddspipe_yaml
cd build\ddspipe_yaml
cmake <path\to\user\workspace>\DDS-Record\src\ddspipe\ddspipe_yaml -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --target install

ddspipe_participants
cd <path\to\user\workspace>\DDS-Record
mkdir build\ddspipe_participants
cd build\ddspipe_participants
cmake <path\to\user\workspace>\DDS-Record\src\ddspipe\ddspipe_participants -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --target install

	Once all dependencies are installed, install eProsima DDS Record:

ddsrecorder_participants
cd <path\to\user\workspace>\DDS-Record
mkdir build\ddsrecorder_participants
cd build\ddsrecorder_participants
cmake <path\to\user\workspace>\DDS-Record\src\ddsrecorder\ddsrecorder_participants ^
 -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --config Release --target install

ddsrecorder_yaml
cd <path\to\user\workspace>\DDS-Record
mkdir build\ddsrecorder_yaml
cd build\ddsrecorder_yaml
cmake <path\to\user\workspace>\DDS-Record\src\ddsrecorder\ddsrecorder_yaml -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install ^
 -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --config Release --target install

ddsrecorder
cd <path\to\user\workspace>\DDS-Record
mkdir build\ddsrecorder
cd build\ddsrecorder
cmake <path\to\user\workspace>\DDS-Record\src\ddsrecorder\ddsrecorder -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Record\install ^
 -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Record\install
cmake --build . --config Release --target install

Note

By default, eProsima DDS Record does not compile tests.
However, they can be activated by downloading and installing Gtest [https://github.com/google/googletest]
and building with CMake option -DBUILD_TESTS=ON.

2.3.2. Global installation

To install eProsima DDS Record system-wide instead of locally, remove all the flags that appear in the configuration steps of Fast-CDR, Fast-DDS, Dev-Utils, DDS-Pipe, and DDS-Record

2.4. Run an application

If the eProsima DDS Record was compiled using colcon, when running an instance of a DDS Recorder, the colcon overlay built in the dedicated DDS-Record directory must be sourced.
There are two possibilities:

	Every time a new shell is opened, prepare the environment locally by typing the command:

setup.bat

	Add the sourcing of the colcon overlay permanently, by opening the Edit the system environment variables control panel, and adding the installation path to the PATH.

However, when running an instance of a DDS Recorder compiled using CMake, it must be linked with its dependencies where the packages have been installed.
This can be done by opening the Edit system environment variables control panel and adding to the PATH the eProsima DDS Record, Fast DDS, Fast CDR, DDS Pipe installation directories:

	Fast DDS: C:\\Program Files\\fastrtps

	Fast CDR: C:\\Program Files\\fastcdr

	DDS Pipe: C:\\Program Files\\ddspipe

	eProsima DDS Record: C:\\Program Files\\ddsrecord

3. CMake options

eProsima DDS Record provides numerous CMake options for changing the behavior and configuration of eProsima DDS Record.
These options allow the developer to enable/disable certain eProsima DDS Record settings by defining these options to ON/OFF at the CMake execution, or set the required path to certain dependencies.

Warning

These options are only for developers who installed eProsima DDS Record following the compilation steps described in Linux installation from sources.

	Option

	Description

	Possible values

	Default

	CMAKE_BUILD_TYPE

	CMake optimization build type.

	Release

Debug

	Release

	BUILD_DDSRECORDER_CONTROLLER

	Build the eProsima DDS Record remote
 controller application.

	OFF

ON

	OFF

	BUILD_DOCS

	Build the eProsima DDS Record documentation.

	OFF

ON

	OFF

	BUILD_TESTS

	Build the eProsima DDS Record tools and
 documentation tests.

	OFF

ON

	OFF

	LOG_INFO

	Activate eProsima DDS Record logs. It is

set to ON if CMAKE_BUILD_TYPE is set

to Debug.

	OFF

ON

	ON if Debug

OFF otherwise

	ASAN_BUILD

	Activate address sanitizer build.

	OFF

ON

	OFF

	TSAN_BUILD

	Activate thread sanitizer build.

	OFF

ON

	OFF

Notes

Version v0.1.0

This is the first release of eProsima DDS Record.

This release includes several features regarding the recording of DDS data, configuration and user interaction.

This release includes the following Recording features:

	Supports DynamicTypes.

	Supports saves the data in a MCAP database.

	Supports for downsampling that reduces the sampling rate of the received data.

	Supports for buffer-size that indicates the number of samples to be stored in the process memory before the dump to disk.

This release includes the following User Interface features:

	Recording Service Command-Line Parameters.

	Remote Control.

This release includes the following Configuration features:

	Support YAML configuration file.

	Support for allow and block topic filters at execution time and in run-time.

	Support configuration related to DDS communication.

	Support configuration of data writing in the database.

	Support configuration of the remote controller of the DDS Recorder.

	Support configuration of the internal operation of the DDS Recorder.

This release includes the following Tutorials:

	Configuring Fast DDS DynamicTypes for data recording.

	Visualize recorded data with Foxglove.

This release includes the following Documentation features:

	This same documentation.

Glossary

	LAN
	Local Area Network

Index

 D
 | E
 | G
 | L
 | M
 | T

D

 	
 	DataReader

 	DataWriter

 	
 	Domain Id

 	DomainParticipant

 	DynamicTypes

E

 	
 	Endpoint

G

 	
 	Guid

 	
 	GuidPrefix

L

 	
 	LAN

M

 	
 	MCAP

T

 	
 	Topic

Forthcoming Version

 _images/recorder_state_diagram.png
ddsrecorder

ddsrecorder
— initial-state: "STOPPED"

ddsrecorder
— initial-state: "PAUSED"

STOPPED

event
{"next_state": "STOPPED"}

event

{"next_state": "RUNNING"} event

stop

_images/shapesdemo_exec.png
Shapes Demo

Control Options Help

Subscribe

Endpoints | Output
Topic Color

1/Square

Type
Pub

eated cor

enebr
r/resources

tarting DDS Router Toc
DS Router running
FRmesmll (/oc Object ShapeType

Tru

" domain
ect

Square MA

uration
executi

stored

/bin/bash

ShapesDenc

1.f.af.e6.3d

ddsrecorder --con
yaml
"

r/dc

_images/foxglove_shapesdemo.png
Shapes Demo

Control Options Help

Publish .

$ EPROSIMA

“The Middleware Exp

Subscribe

Endpoints | Output.

Topic __Color size Type Relia*
1Square RED 30 Pub True
2 Trangle CYAN 30 Pub True

_images/foxglove_studio_shapesdemo.png
shapesdemo_data x +

c h studio.foxglov
[ShepesDemox vaes 24 @ X Cice : | Data Source Info
“ ShapeType @ 1677574417.038804368 sec {1
Circlex 107 B} . URRENT SOURCE
O color "YELLOW' shapesdemo_data_2023-02-28_08-53-16.mcap

B ® Squarex 45 B2
y 107

shapesize 30

2023-02-28 9:53:16.862 AM CET

Cs END TIME
2023-02-28 9:54:29.463 AM CET
o \ DURATION
0:01:12.601
{x} Topic Name Datatype Message count Frequency
B 3 square ;| Circle ShapeType 969 13.35 Hz
O+
55) \ ShapeType @ 1677574417.038588107 sec (0 Square ShapeType B BB
color "RED"
x 140 Triangle ShapeType 969 13.35 Hz
y 96
N\ shapesize 30

® X Triangle

ShapeType @ 1677574417.038611231 sec {0
color "CYAN"
x 219

y 207
shapesize 30

Reset view

9:53:37.066 AM CET D 1x v

_static/file.png

_images/shapesdemo_publisher.png
Shapes Demo - o x

Control Options Help.

Publish

$ EPROSIMA

The Middleware Experts

Subscribe.

Endpoints | Output
Topic | Color size Type | Reliable
1/Square RED 30 Pub True

_static/minus.png

_static/plus.png

_images/controller_interact.png
DDS Recorder controller

File Help
eProsima DDS Recorder status: [C—
start Timestamp Source Message
pause | 12023-03-081421:17,448 Controller DDS Recorder found!
Stop | 2/2023:03-0814:21:17,528 DDS .. Update from CLOSED to STOPPED
Event | 3/2023-03-0814:22:20,639 Controller start [] command sent
Event store| 4 20230308 142220643 DDS ... Update from STOPPED to RUNNING
Event Stop

Close

_images/ddsrecord_overview.png
Shapes Demo (on F9e2694c2b96) -
Control Options Help

DS Rec:-:

Subscribe /* output . mcap */

Publish

KO

PROSIMA

he Middleware Experts

SCHEMA
- Name = /shapes
Endpoints | Output Encoding = CDR
Topic Color Type Relia =

1| Square RED Pub True Data Type —
2|Square Sub False struct ShapeType {

. T @key string color;
long x, y;

long shapesize;

RECORDS

timestamp 0 -> 02 ff 25 ..
timestampl -> 56 12 de ..

_images/controller_found.png
DDS Recorder controller

File Help

eProsima DDS Recorder status: [ESTCERE—
start Timestamp Source Message
pause | 12023-03-081421:17,448 Controller DDS Recorder found!
Stop | 2/2023:03-0814:21:17,528 DDS .. Update from CLOSED to STOPPED
Event

Event Start

Event Stop

Close

_images/controller_init.png
DDS Recorder controller

File Help

eProsima DDS Recorder status: [N CICSECII—

start Timestamp Source Message
Pause
Stop
Event
Event Start
Event Stop

Close

nav.xhtml

 Table of Contents

 		
 Overview

_images/controller_close.png
DDS Recorder controller

File Help
eProsima DDS Recorder status: [N CICSECII—
start Timestamp Source Message =
B Lo L AN o S e
Pause | 5 12023.03-08 14:22:50,683 Controller stop [] command sent
Stop |6 |2023-03-08 14:22:50,773 DDS... Update from RUNNING to ...

Event |7 2023-03-0814:22:52,153 Controller pause [] command sent
Event Start| g 2023-03-08 14:22:52,155 DDS Update from STOPPED to PAUSED

Event Stop | 9 ' 2023-03-08 14:22:54,293 Controller event [] command sent

Close | 10/2023-03-08 14:22:57,081 Controller start [] command sent
11/2023-03-08 14:22:57,092 DDS Update from PAUSED to RUNNING

12/2023-03-08 14:22:59,191 Controller close [] command sent

13/2023-03-08 14:22:59,209 DDS ... Update from RUNNING to CLOSED

14/2023-03-08 14:22:59,214 Controller DDS Recorder lost!

_images/controller_domain.png
DDS Recorder controller

File Help

eProsima DDS Recorder status: [INCICSEDI—
Start Timestamp Source Message
Pause
Event

Event Start

Event Stop Qcancel

Close

_images/basic_publisher_subscriber.png
=) C build [1/1 done] [0 ongoing
irenebm@xps-15-7590: ~/annapurna/DDS-Recorder/build/TypeLookupService $./TypelLookupService --entity publisher
Participant < 01.0f.af.e6.€1.58.1e.40.00.00.00.00|0.0.1.c1> created...
- DDS Domain: @
- DataWriter: 01.0f.af.e6.e1.58.1e.40.00.00.00.00|0.0.1.3
- Topic name: /dds/topic
- Topic data type: HelloWorld
Publisher running. Please press CTRL+C to stop the Publisher at any time.

2023-02-20 16:13:05.525 [RTPS_TRANSPORT_SHM Warning] Buffer is being invalidated, segment_size may be insufficient
-> Function invalidate_if_not_processing
DataWriter matched with DataReader: 1.f.af.e6.eb.58.8f.69.0.0.0.0.0.0.1.4
Message published:
index: 1
message: Hello World
Message published:
index: 2
=) bin/bash 114x20
irenebm@xps-15-7590: ~/annapurna/DDS-Recorder/build/TypeLookupService $./TypelLookupService --entity subscriber
Participant < 01.0f.af.e6.eb.58.8f.69.00.00.00.00|0.0.1.c1> created...
- DDS Domain: @

Subscriber waiting to discover type for topic < /dds/topic >. Press CTRL+C to stop the Subscriber...

2023-02-20 16:13:05.526 [RTPS_TRANSPORT_SHM Warning] Buffer is being invalidated, segment_size may be insufficient
-> Function invalidate_if_not_processing

Found type in topic < /dds/topic > with name < HelloWorld > by lookup service. Registering...

DataReader matched with DataWriter: 1.f.af.e6.€1.58.1e.40.0.0.0.0.0.0.1.3

Participant < 01.0f.af.e6.eb.58.8f.69.00.00.00.00]0.0.1.c1 > in domain < 0 > created reader < 01.0f.af.e6.eb.58.8f
.69.00.00.00.00|0.0.1.4 > in topic < /dds/topic > with data type < HelloWorld >

Subscriber < 01.0f.af.e6.eb.58.8f.69.00.00.00.00|0.0.1.4 > listening for data in topic < /dds/topic > found data t

ype < HelloWorld >

Press CTRL+C to stop the Subscriber.

Message 1 received:

Hello World

Message 2 received:

_static/css/imgs/logo.png

